Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Благодаря своему умения передавать сообщения, актеры становятся в каком-то смысле автономными агентами — их можно даже сравнить с самими компьютерами, а сообщения — с программами. Каждый актер может интерпретировать данное сообщение по-своему; таким образом, значение сообщения будет зависеть от актера, его получившего. Это объясняется тем, что в актерах есть часть программы, которая интерпретирует сообщения; поэтому интерпретаторов может быть столько же, сколько и актеров. Разумеется, интерпретаторы многих актеров могут оказаться идентичными; в действительности, это может быть большим преимуществом (так же важно, чтобы в клетке было множество плавающих в цитоплазме идентичных рибосом, каждая из которых будет интерпретировать сообщение — в данном случае, мессенджер ДНА — одинаковым образом).

Интересно подумать, как можно соединить понятие фреймов с понятием актеров. Давайте назовем фрейм, способный создавать и интерпретировать сложные сообщения, символом:

фрейм + актер = символ

Мы будем говорить здесь о том, как можно представить те неуловимые активные символы, которые обсуждались в главах XI и XII; поэтому в данной главе «символ» будет иметь то же значение. Не расстраивайтесь, если вы не сразу поймете, каким образом может произойти этот синтез. Это, действительно, неясно, — но это одно из самых многообещающих направлений исследований в ИИ. Более того, несомненно, что даже наилучшие синтетические представления будут менее мощными, чем символы человеческого мозга. В этом смысле, пожалуй, еще рановато называть объединения фреймов с актерами «символами», но это — оптимистический взгляд на вещи.

Давайте вернемся к темам, связанным с передачей сообщений. Должно ли данное сообщение быть направлено на определенный символ, или же оно должно быть брошено наугад, так же как мРНК брошен наугад в цитоплазму, где он должен найти свою рибосому? Если у сообщений есть предназначение, то у каждого символа должен быть адрес, по которому будут посланы соответствующие сообщения. С другой стороны, может существовать некая центральная «станция» для получения сообщений, где каждое сообщение будут храниться, как письмо до востребования, пока оно не понадобится какому-либо символу. Это — альтернатива доставке писем адресатам. Возможно, наилучшее решение — сосуществование обоих типов сообщений и возможность разных степеней срочности: сверхсрочное, срочное, обычное и так далее. Система почтовой связи — богатый источник идей для языков, передающих сообщения; она включает такие возможности как письмо с оплаченным ответом (сообщения, чьи отправители хотят срочно получить ответ), бандероли (очень длинные послания, которые могут быть посланы несрочным путем) и тому подобное. Когда вы исчерпаете запас почтовых идей, вашему воображению может дать толчок система телефонной связи.

Энзимы и ИИ

Другой источник идей для передачи сообщений — и обработки информации вообще — это, разумеется, клетка. Некоторые объекты клетки можно сравнить с актерами — в частности, эту роль выполняют энзимы. Активный центр каждого энзима работает как фильтр, который узнает только определенные типы субстратов (сообщений). Можно сказать, что у энзима есть «адрес». Благодаря своей третичной структуре, энзим «запрограммирован» так, чтобы провести некоторые операции с этим «сообщением» и затем снова выпустить его «в мир». Таким образом, путем передачи сообщения химическим путем от энзима к энзиму можно сделать очень многое. Мы уже описали сложные способы обратной связи в клетке (путем торможения или подавления). Эти механизмы показывают, что сложный контроль процессов может возникнуть из клеточного типа передачи сообщений.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное