Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Один из самых удивительных фактов, касающихся энзимов. — это то, что они бездействуют в ожидании нужного субстрата. Когда субстрат появляется, энзим внезапно начинает действовать, наподобие венериной мухоловки — насекомоядного растения. Подобная программа-триггер была использована в ИИ, где она получила название демона. Здесь важна идея наличия многих различных «семейств» подпрограмм, ожидающих активации. В клетке все сложные молекулы и органоиды строятся постепенно, шаг за шагом. Некоторые из этих новых структур сами являются энзимами и участвуют в построении новых энзимов — которые, в свою очередь, начинают строить другие типы энзимов и так далее. Подобные рекурсивные каскады энзимов очень сильно влияют на то, что делается в клетке. Было бы хорошо перенести подобный простой, ступенчатый процесс в ИИ — в построение полезных подпрограмм. Например, повторение — это способ вмонтировать некие структуры в аппаратуру нашего мозга, так что часто повторяемое поведение становится закодировано на подсознательном уровне. Было бы полезно найти аналогичный способ создания эффективных кусочков кода, которые могли бы производить такую же последовательность операций, как и нечто, выученное на высшем уровне «сознания». Каскады энзимов могут служить моделью того, как это может быть сделано. (Программа под названием «Hacker», написанная Геральдом Суссманом, создает и отлаживает небольшие подпрограммы способом, не слишком отличным от каскада энзимов.) Детектор сходства в программе, решающей задачи Бонгарда, мог бы сыграть роль такой энзимообразной подпрограммы. Подобно энзиму, этот детектор бродит вокруг, иногда натыкаясь на небольшие фрагменты данных. Когда пара его «активных центров» заполняется схожими структурами, детектор посылает сообщение другим частям программы (актерам). Пока программы соединены последовательно, иметь несколько копий детектора сходства не имеет смысла; однако в параллельном компьютере регулировка количества копий подпрограммы была бы способом регулировки также и предполагаемого времени до конца программы. Таким же образом, регулировка количества копий данного энзима в клетке регулирует скорость данного процесса. Создание новых детекторов было бы сравнимо с просачиванием обнаружения структур на низшие уровни нашего разума.

Расщепление и синтез

Две интересные дополнительные идеи, касающиеся взаимодействия символов, — это расщепление и синтез. Расщепление — это постепенное отделение нового символа от символа-родителя (то есть символа, послужившего эталоном для создания нового символа). Синтез — это то, что происходит, когда два ранее не связанных символа участвуют в «совместной активации», передавая сообщения между собой так интенсивно, что они становятся слитными; после чего эта комбинация начинает действовать как один символ. Расщепление — процесс более или менее неизбежный. Как только новый символ произведен на основе старого, он становится автономным, и его взаимодействие с окружающим миром отражается в его собственной внутренней структуре. Таким образом, то, что началось как совершенная копия, вскоре становится неточным, и все меньше и меньше походит на первоначальный символ. Синтез — вещь более тонкая. Когда два понятия сливаются в одно? Можно ли указать точный момент, когда это происходит? Понятие совместной активации открывает Пандорин ящик вопросов. Например, слышим ли мы отдельно слова «пар» и «ход», когда говорим о пароходе? Когда немец думает о перчатках («Handschuhe»), слышит ли он слова «Hand» и «Schuhe» («рука» и «обувь»)? А как насчет китайцев, чье слово «донг-хи» («восток-запад») означает «вещь»? Эта проблема переходит в область политики, когда некоторые люди высказывают мысль, что слова типа «медсестра» выражают недостаток уважения к женщинам. То, в какой степени в целом звучат отдельные части, варьируется, скорее всего, в зависимости от человека и от обстоятельств.

Основная проблема с понятием «синтеза» символов заключается в том, что очень трудно найти алгоритм, создающий новые значимые символы из символов, сталкивающихся между собой. Это подобно двум соединяющимся цепочкам ДНК. Каким образом можно взять части каждой из них и соединить их в новую значимую цепочку, в которой была бы закодирована особь того же класса? Или нового класса? Почти невероятно, что случайная комбинация ДНК окажется жизнеспособной, — вероятность этого такая же, как вероятность того, что перемешанные слова двух книг создадут третью книгу. Скорее всего, рекомбинация ДНК будет бессмысленна на всех уровнях, кроме самого низшего, именно потому, что в ДНК так много уровней значения… То же самое верно и для «рекомбинаций символов».

Эпигенез «Крабьего канона»

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное