Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Именно этот образ навел меня на мысль описать создание «Крабьего канона» в терминах мейозиса — что само по себе, разумеется, также является примером концептуального отображения.

Рекомбинация идей

Существуют разные способы синтеза двух символов. Например, можно расположить идеи рядышком (словно идеи линейны!) и затем выбирать из каждой по кусочку и комбинировать их по-новому. Это напоминает генетическую рекомбинацию. Чем именно обмениваются хромосомы, и как они это делают? Они обмениваются генами. Что в символе сравнимо с геном? Если в символе есть рамкообразные гнезда, то, пожалуй, именно эти гнезда. Но какие из них должны быть обменены, и почему? Ответить на этот вопрос нам поможет синтез крабоканонического типа. Отображение понятия «музыкального канона-ракохода» на понятие «диалога» включало в себя несколько дополнительных отображений — в действительности, оно порождало дополнительные отображения. Как только было решено, что эти идеи должны быть отображены друг на друга, оставалось лишь взглянуть на них на том уровне, где были заметны аналогичные части, и затем начать их взаимное отображение. Этот рекурсивный процесс может идти на каком угодно уровне. Например, «голос» и «действующее лицо» возникли как соответствующие друг другу гнезда абстрактных понятий «музыкальный канон» и «диалог». Откуда же взялись сами эти абстрактные понятия? Это основная проблема отображения: откуда берутся абстрактные представления? Как можно получить абстрактное представление специфических понятий?

Абстракции, скелеты и аналогии

Концептуальный скелет — это некое абстрактное представление, полученное путем проецирования понятия на одно из его измерений. Мы уже имели дело с концептуальными скелетами, не называя их по имени. Например, многие идеи, касающихся задач Бонгарда, могут быть выражены в этих терминах. Это всегда интересно и часто полезно, когда мы обнаруживаем, что две (или более) идеи имеют сходный концептуальный скелет. Примером этого может служить странный набор понятий, упоминающихся в начале «Контрафактуса»: бициклопы, одноколесный тандем, мотоциклы «Зигзиг», игра в пинг-пинг, команда, разделившая первое место сама с собой, двухсторонний лист Мёбиуса, «близнецы Бах», фортепианный концерт для двух левых рук, одноголосная фуга, аплодирование одной рукой, двухканальный моно-магнитофон, четверка четвертьзащитников. Все эти идеи изоморфны, потому что у них один и тот же концептуальный скелет:

множественная вещь, разъятая на части и собранная ошибочно.

Две других идеи этой книги, разделяющие один и тот же концептуальный скелет, это (1) Черепахино решение Ахилловой головоломки — найти слово, начинающееся и кончающееся на «КА» (она предложила частицу «КА», соединяющие оба «ка» в одно) и (2) доказательство Теоремы Ослиного Мостика (Pons Asinorum), предложенное Паппусом и программой Гелернтера, в котором один треугольник представлен как два. Эти странные сооружения можно именовать «полу-двойняшками.»

Концептуальный скелет — нечто вроде набора постоянных черт идеи, которые, в отличие от ее параметров и переменных, должны оставаться неизменными при отображении ее на другие идеи или при выдумывании альтернативных миров. Поскольку в концептуальном скелете нет собственных параметров и переменных, он может лежать в основе нескольких различных идей. В каждом конкретном примере (как, скажем, «моно-тандем») есть уровни изменчивости, что позволяет нам модифицировать его по-разному. Хотя название «концептуальный скелет» вызывает образ чего-то жесткого и абсолютного, на самом деле он довольно гибок. На разных уровнях абстракции можно найти различные концептуальные скелеты. Например, «изоморфизм» между задачами Бонгарда #70 и #71, о котором я уже упоминал, включает концептуальный скелет более высокого уровня, чем тот, который требуется для решения обеих задач в отдельности.

Множественные представления

Концептуальные скелеты должны существовать не только на разных уровнях абстракции, но также в разных концептуальных измерениях. Возьмем, например, следующее изречение:

«Вице-президент — запасное колесо в автомобиле правительства.»

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное