Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Мой Диалог «Крабий канон» кажется мне прототипом того, как две идеи столкнулись у меня в голове, соединились по-новому и вызвали к жизни новую словесную структуру. Разумеется, я все еще могу думать о музыкальных канонах и о диалогах раздельно; эти символы все еще могут быть активированы у меня в голове независимо друг от друга. Однако у этого синтетизированного символа для крабоканонических диалогов также есть собственный характерный вид активации. Чтобы проиллюстрировать понятие синтеза или «символической рекомбинации» более подробно, я хотел бы использовать пример создания «Крабьего канона». Во-первых, это мне хорошо известно, а во-вторых, это интересно и типично для того, чтобы показать, как далеко можно пойти в развитии какой-либо идеи. Я изложу это по стадиям, названным в честь мейоза — деления клеток, в котором участвует скрещивание хромосом, или генетическая рекомбинация, — источники разнообразия в эволюции.

ПРОФАЗА: Я начал с довольно простой идеи — что музыкальное произведение, например, канон, можно проимитировать словесно. Это было основано на наблюдении, что кусок текста и кусок музыкальной пьесы могут быть соотнесены между собой путем использования одной и той же абстрактной формы. Следующим шагом была попытка воплотить в жизнь некоторые возможности этой туманной идеи: здесь мне пришло в голову, что «голоса» канонов могут быть отображены в «действующих лицах» диалогов, — мысль все еще довольно очевидная.

Далее я стал перебирать специфические виды канонов и вспомнил, что в «Музыкальном приношении» был ракоходный канон. Тогда я только начинал писать Диалоги, и в них было лишь два действующих лица: Ахилл и Черепаха. Поскольку Баховский ракоходный канон — двухголосный, соответствие было полным: Ахилл был бы первым голосом, идущим вперед, а Черепаха — вторым, идущим назад. Однако здесь возникла следующая трудность: на каком уровне должно происходить обращение? На уровне букв? Предложений? После некоторого раздумья я заключил, что самым подходящим является уровень реплик, то есть драматического действия.

После того, как «скелет» Баховского канона был переведен, по крайней мере, в черновике, в словесную форму, оставалась одна проблема. Когда оба голоса встречались в середине, то получался период крайнего повторения — довольно серьезный недостаток. Как можно было поправить дело? Тут произошла странная вещь — типичное для творчества скрещение уровней: мне в голову пришло слово «краб» из названия канона, несомненно, из-за некоей его общности с понятием «черепахи». Я тотчас сообразил, что повторение в середине может быть предотвращено, если ввести туда реплику, произнесенную новым действующим лицом — Крабом! Так в «профазе» «Крабьего канона» из скрещивания Ахилла и Черепахи на свет появился Краб. (См. рис. 131).


Рис. 131. Схематическая диаграмма Диалога «Крабий канон».

МЕТАФАЗА: Итак, скелет моего «Крабьего канона» был готов. Я перешел ко второй стадии — «метафазе,» — в которой моей задачей было облечь скелет в плоть. Разумеется, это было нелегкой задачей. Мне пришлось изрядно попотеть в поисках пар фраз, которые имели бы смысл при прочтении в обратном порядке, и фраз с двойным значением, которые помогли бы мне создать подобную форму (например, «не стоит»). Два ранних варианта получились интересными, но слабоватыми. Когда, после годичного перерыва, я вернулся к работе над книгой, у меня было несколько новых идей для «Крабьего диалога». Одной из них было упоминание какого-либо Баховского канона в самом Диалоге. Сначала я собирался упомянуть о каноне под названием «Canon per augmentationem, contrario motu» из «Музыкального приношения» (этому канону у меня соответствует Диалог «Канон ленивца»). Однако это выглядело глуповато, так что в конце концов я решил, скрепя сердце, что в «Крабьем каноне» я могу говорить собственно о ракоходном каноне Баха. На самом деле, это оказалось поворотным пунктом в работе над Диалогом, о чем я тогда еще не догадывался.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное