Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Большинство читателей, пытаясь решить головоломку MU, начинает выводить теоремы наобум и смотрят, что при этом получается. Вскоре, однако, они замечают, что полученные теоремы обладают некими свойствами; в этот момент в работу включается разум. Возможно, что пока вы не вывели несколько теорем, для вас не было очевидным, что все они будут начинаться с M. В какой-то момент вы заметили некую закономерность и смогли ее объяснить, исходя из правил они таковы; что каждая новая теорема наследует первую букву предыдущей. В результате первые буквы всех теорем восходят к первой букве нашей единственной аксиомы MI — и это доказательство того, что все теоремы системы MIU должны начинаться с M.

То, что произошло, очень важно. Это указывает на одно из различий между человеком и машиной. Было бы возможно — и даже весьма нетрудно — запрограммировать компьютер на вывод теорем системы MIU; мы можем включить в программу команду, велящую машине не останавливаться, пока она не выведет U. Читатель уже знает, что компьютер, запрограммированный таким образом, не остановится никогда.

В этом нет ничего удивительного. Но что, если бы вы попросили вывести U одного из ваших приятелей? Вы не удивились бы, если бы он через некоторое время подошел к вам, жалуясь, что он никак не может избавиться от M, и что эти поиски — сумасбродная затея.

Даже не очень сообразительный человек не может не заметить закономерности в том, что он делает; эти наблюдения помогают ему лучше понять поставленную перед ним задачу. Компьютерная программа, которую мы только что упомянули, этого сделать не может.

Когда я сказал, что этот факт показывает различие между человеком и машиной, я имел в виду следующее: компьютер возможно запрограммировать таким образом, что тот никогда не заметит даже самых очевидных закономерностей в том, что он делает; человеку, однако, свойственно подмечать определенные закономерности в его занятиях. Все это читатель, конечно, знал и раньше. Если вы возьмете калькулятор, нажмете на 1, прибавите 1, снова прибавите 1, и будете делать то же самое еще много раз подряд, калькулятор никогда не научится делать этого сам; однако любой человек очень быстро заметил бы схему в ваших действиях Еще один простой пример: автомобиль, как бы долго и хорошо его не водили, никогда не научится избегать аварий и никогда не выучит даже самые частые маршруты своего хозяина.

Таким образом, различие в том, что машина может не делать наблюдений, в то время как для человека это невозможно. Заметьте, что я не говорю, что вообще никакие машины не способны делать сложных наблюдений; я имею в виду лишь некоторые из них. Я также не хочу сказать, что все люди способны делать сложные наблюдения; на самом деле, многие из них весьма ненаблюдательны. Но машины, в отличие от людей, могут быть сделаны совершенно ненаблюдательными. На самом деле, большинство машин, созданных до сих пор, весьма близки к полной ненаблюдательности; именно поэтому, многие считают, что отсутствие наблюдательности — одна из основных характеристик машин. Например, говоря о «механической» работе, мы не имеем в виду, что люди не могут с ней справиться; мы хотим сказать, что только машина способна безропотно проделывать такую работу снова и снова.

Прыжки за пределы системы

Человеческому интеллекту свойственно умение, выпрыгивая за пределы системы, смотреть на то, что он делает, со стороны; при этом он ищет — и часто находит — какую-либо схему, закономерность. В то же время, сказав, что разум способен взглянуть на свою работу со стороны, я не говорю, что он делает это всегда. Зачастую, однако, для этого бывает достаточно лишь небольшого толчка. Например, человеку, читающему книгу, может захотеться спать. Вместо того, чтобы дочитать книгу до конца, он, скорее всего, отложит ее в сторону и потушит свет. При этом он «выходит из системы»; нам это кажется вполне естественным. Другой пример: человек А смотрит телевизор. В комнату входит человек Б и показывает явное неудовольствие ситуацией. Человек А может решить, что он понимает, в чем дело, и попытаться исправить положение, выходя из данной системы (той программы телевизора, которую он смотрел) и переключая телевизор на другой канал в поисках лучшей передачи. Б, однако, может иметь в виду более радикальный «выход из системы» — а именно, вообще выключить телевизор! В некоторых случаях только редкие личности могут заметить систему, управляющую жизнью многих людей — систему, никогда раньше таковой не считавшуюся. Подобные личности зачастую посвящают жизнь тому, чтобы убедить остальных, что система действительно существует, и что из нее необходимо выйти!

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное