Зенон
: Теперь Черепаха впереди него лишь на пять метров. Ахилл вмиг достигает того места.Ахилл
: Хо-хо!Зенон
: Все же за этот миг Черепаха успела немного продвинуться вперед. В мгновение ока Ахилл покрывает и эту дистанцию.Ахилл
: Хи-хи-хи!Зенон
: Но и в это кратчайшее мгновение Черепаха чуточку продвинулась, и опять Ахилл оказался позади. Теперь вы видите, что если Ахилл хочет нагнать Черепаху, ему придется играть в эти «догонялки» БЕСКОНЕЧНО — а следовательно, он НИКОГДА ее не догонит!Черепаха
: Хе-хе-хе-хе!Ахилл
: Хм… хм… хм… хм… хм… Этот довод кажется мне неверным. Однако я никак не могу понять, в чем здесь ошибка.Зенон
: Хороша головоломочка? Это мой любимый парадокс.Черепаха
: Прошу прощения, Зенон, но мне кажется, что вы рассказали нам что-то не то. Через несколько веков этот ваш рассказ будет известен как парадокс Зенона «Ахилл и Черепаха»; он показывает — гм! — что Ахилл никогда не догонит Черепаху. Доказательство же того, что Мир Изменяется Исключительно Иллюзорно (а следовательно, Мир Ультранеподвижен) содержится в вашем «Дихотомическом Парадоксе», не так ли?Зенон
: Ах, какой стыд. Конечно же, вы правы. Это тот парадокс, где объясняется, что идя от А до Б, надо сначала пройти половину пути — но от этой половины также придется сначала пройти половину… и так далее. Оба эти парадокса очень похожи; честно говоря, я просто обыгрывал мою Великую Идею с разных сторон.Ахилл
: Могу поклясться, что эти аргументы содержат ошибку. Хотя я не вижу, где в них ошибка, зато прекрасно понимаю, что они не могут быть верными.Зенон
: Так вы сомневаетесь в правильности моих парадоксов? Отчего же вам самим не попробовать? Видите тот красный флаг в конце дорожки?Ахилл
: Невозможный, сделанный по гравюре Эшера?Зенон
: Тот самый. Как насчет того, чтобы вам с Черепахой пробежаться к флагу наперегонки? Конечно, ей надо будет дать приличную фору, скажем…Черепаха
: Как насчет пятидесяти локтей?Зенон
: Отлично — пусть будут пятьдесят локтей.Ахилл
: Я-то всегда готов.Зенон
: Вот и чудесно. Все это захватывающе интересно! Сейчас мы проверим мою строго доказанную Теорему на опыте! Госпожа Черепаха, будьте так добры, займите позицию на пятьдесят локтей впереди Ахилла.(Черепаха продвигается на пятьдесят локтей ближе к флагу.)
Ну как, вы оба готовы?
Черепаха и Ахилл
: Готовы!Зенон
: На старт… Внимание… Марш!ГЛАВА I: Головоломка MU
Формальные системы
ОДНИМ ИЗ центральных понятий этой книги является понятие формальной системы.
Формальные системы того типа, который я использую, были изобретены американским логиком Эмилем Постом в 1920-х годах; их часто называют системами продукции или системами Поста. Эта глава познакомит вас с одной из таких формальных систем. Надеюсь, что вам захочется хотя бы немного ее исследовать — чтобы вас заинтересовать, я придумал небольшую головоломку.Головоломка формулируется просто: «Можете ли вы получить MU
?» Для начала вам будет дана некая строчка (последовательность букв).{1} Чтобы не мучить вас неизвестностью, сообщу эту строчку сразу — это будет MI. Кроме этого, вам будут даны правила, с помощью которых вы сможете превращать одну строчку в другую. Вы можете использовать любое правило, применимое в данный момент; при этом, если таких правил несколько, у вас имеется свободный выбор. Именно в этот момент игра с формальной системой ближе всего подходит к искусству. Само собой, главное требование игры — следование правилам. Это ограничение может быть названо «требованием формальности». Возможно, что в данной главе нам не придется подробно на нем останавливаться. Однако, как бы удивительно это вам не казалось, работая с формальными системами последующих глав, вы увидите, что вам частенько захочется нарушать требование формальности, если у вас раньше не было навыка работы с подобными системами.Наша формальная система — назовем ее системой MIU
— использует лишь три буквы: М, U, I. Это означает, что единственными строчками системы MIU будут те, которые используют только эти буквы. Ниже приводятся некоторые строчки системы MIU:MU
UIM
MUUMUU
UIIUMIUUIMUIIUMIUUIMUIIU
Однако, хотя все эти строчки и правильны, вы еще не можете ими распоряжаться. Пока у вас имеется единственная строчка — MI
. Вы можете расширить вашу «коллекцию» путем применения правил. Первое правило нашей системы:ПРАВИЛО I: Если у вас есть строчка, кончающаяся на I
, вы можете прибавить U в конце.Кстати, надо отметить, если вы уже сами об этом не догадались, что в понятии «строчка» важен определенный порядок букв. Например, MI
и IM — две разные строчки. Строчка символов совсем не то же самое, что «мешок» с символами, где порядок символов не играет никакой роли.Второе правило нашей системы:
ПРАВИЛО II: Если у вас имеется М
x, вы можете прибавить к вашей коллекции Мxx.