Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Вскоре после того, как я начал писать Диалоги, каким-то образом они связались в моим воображении с музыкальными формами. Не помню того момента, когда это произошло, помню лишь, как однажды я в задумчивости написал «фуга» над текстом одного из ранних Диалогов. Идея привилась, и с тех пор я стал писать Диалоги, формально составленные по образцу различных композиций Баха. Это оказалось неплохой мыслью. Сам Бах часто напоминал своим ученикам, что различные части их композиций должны вести себя как «люди, беседующие друг с другом в избранном обществе». Возможно, что я вложил в этот совет более буквальный смысл, чем Бах, надеюсь все же, что результат оказался верен также и его духу. Особенно меня вдохновили некоторые поразительные аспекты Баховских композиций, которые так прекрасно описаны Менделем и Давидом в их книге «Баховская хрестоматия» (Mendel & David, «The Bach Reader»):

Форма у Баха в основном опиралась на соотношения между отдельными частями от полного сходства с одной стороны до повторения какого-либо одного композиционного принципа или просто мелодической переклички с другой стороны. Получившиеся композиции часто бывали симметричными но это никоим образом не являлось необходимым следствием. Иногда соотношения между частями создают запутанный клубок, который можно распутать только путем детального анализа. Обычно впрочем, несколько доминирующих черт позволяют сориентироваться с первого взгляда или прослушивания, хотя при дальнейшем изучении мы можем открыть для себя множество тонкостей нас никогда не покидает чувство единства, связывающего каждое произведение Баха в одно гармоничное целое.[7]

Я решил попытаться сплести Бесконечную Гирлянду из этих трех прядей Гедель, Эшер, Бах. По началу я планировал написать эссе, центральной темой которого была бы теорема Геделя о неполноте. Я думал, что у меня получится тоненькая брошюрка, однако мой проект стал расти, как снежный ком, и вскоре затронул Баха и Эшера. Некоторое время я не знал, выразить ли эту связь открыто или же оставить ее при себе как источник собственного вдохновения. В конце концов я понял, что Гедель, Эшер и Бах для меня — только тени, отбрасываемые в разные стороны некой единой центральной сущностью. Я попробовал реконструировать этот центральный объект, результатом моей попытки явилась эта книга.

Трехголосная инвенция

Ахилл (греческий воин, самый быстроногий из смертных) и Черепаха стоят рядом на пыльной беговой дорожке; жара, палит солнце. Далеко в конце дорожки на высоком флагштоке висит большой прямоугольный ярко-красный флаг. В центре флага вырезана дыра в форме кольца, сквозь которую видно небо.

Ахилл: Что это за странный флаг там, на другом конце дорожки? Он чем-то напоминает мне гравюру моего любимого художника, Эшера.

Черепаха: Это флаг Зенона.

Ахилл: Не кажется ли вам, что дыра в нем похожа на отверстия в листе Мёбиуса на одной из картин Эшера? Могу поспорить, что с этим флагом что-то не в порядке.

Черепаха: В нем вырезано кольцо в форме нуля — любимого числа Зенона.

Ахилл: Но ведь в то время нуль еще не был изобретен! Он будет придуман неким индусским математиком только несколько тысяч лет спустя. Это доказывает, дорогая г-жа Ч, что подобный флаг невозможен.

Черепаха: Ваши доводы убедительны, Ахилл, и я должна согласиться, что такой флаг, действительно, не может существовать. Но все равно он замечательно красив, не правда ли?

Ахилл: В этом я не сомневаюсь.

Черепаха: Интересно, не связана ли его красота с его невозможностью? Не знаю, не знаю.. У меня никогда не доходили лапы до анализа Красоты. Это Сущность с Большой Буквы, а у меня никогда не хватало времени на Сущности с Большой Буквы.

Ахилл: Кстати, о Сущностях с Большой Буквы — вы никогда не задавались вопросом о Смысле Жизни?

Черепаха: Бог мой, конечно же, нет!

Ахилл: Не спрашивали ли вы себя, зачем мы здесь и кто нас изобрел?

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное