Этот вопрос особенно тревожил знаменитого немецкого математика (и метаматематика) Дэвида Гильберта, кто поставил перед математиками (и метаматематиками) всего мира следующую задачу: со всей строгостью доказать, возможно, при помощи самих методов Рассела и Уайтхеда, что эти методы, во-первых, непротиворечивы и во-вторых, полны (иными словами, что в системе «ОМ» может быть выведено любое истинное высказывание). Эта задача весьма непростая, и ее можно критиковать за некоторую «порочную кругообразность», как можно пытаться доказать какие-либо методы рассуждения, пользуясь этими же методами? Это все равно, что пытаться поднять самого себя на воздух за шнурки от собственных ботинок. (Кажется, нам-таки никуда не деться от этих Странных Петель)
Гильберт, разумеется, полностью отдавал себе отчет в этой дилемме; однако он надеялся, что доказательство полноты и непротиворечивости удастся найти с помощью только небольшой группы так называемых «финитных» методов рассуждения, признаваемых большинством математиков. В этом смысле Гильберт надеялся, что математикам все же удастся «поднять самих себя на воздух за шнурки ботинок», доказав правильность
Однако в тридцать первом году Гёдель опубликовал работу, подорвавшую основы Гильбертовой программы. Эта работа показала не только наличие незаполнимых «дыр» в аксиоматической системе, предложенной Расселом и Уайтхедом, но и то, что ни одна аксиоматическая система не может породить все истинные высказывания теории чисел, если она не является противоречивой! Наконец, Гёдель показал, насколько тщетна надежда доказать непротиворечивость системы «ОМ» если бы такое доказательство было найдено только при помощи методов, используемых в «ОМ» — и это одно из самых удивительных следствий Гёделевской работы — сами «ОМ» оказались бы противоречивы!
Последний иронический штрих для доказательства теоремы Гёделя о неполноте потребовалось внедрить парадокс Эпименида прямо в сердце «Оснований математики» — бастиона, считавшегося недоступным для Странных Петель. Хотя Гёделева Странная Петля и не разрушила «Оснований математики», она сделала их гораздо менее интересными для математиков, доказав иллюзорность цели, первоначально поставленной Расселом и Уайтхедом.
Как раз когда работа Гёделя вышла в свет, мир был накануне создания электронных цифровых компьютеров. Идея механических счетных машин носилась в воздухе уже давно В семнадцатом веке Паскаль и Лейбниц разработали машины для выполнения установленных операций сложения и умножения. К сожалению, эти машины не имели памяти и не были, в современном понимании этого слова, программируемыми
Первым человеком, понявшим, какой огромный счетный потенциал заключают в себе машины, был лондонец Чарльз Баббадж (Charles Babbage, 1792- 1871), фигура, словно сошедшая со страниц «Пиквикского клуба». При жизни он был известен более всего тем, что вел энергичные кампании по очистке Лондона от «нарушителей спокойствия», в первую очередь, шарманщиков.
Эти паразиты любили подразнить Баббаджа и исполняли для него «серенады» в любой час дня и ночи, а он, в ярости, гнал их вдоль по улице. Сегодня мы признаем, что Баббадж был человеком, обогнавшим свое время лет на сто он не только изобрел основные принципы современных компьютеров, но и был первым борцом за охрану окружающей среды от шума.
Его первое изобретение, «разностная машина», могла вычислять математические таблицы многих типов по «методу разностей». Однако, прежде чем была создана первая модель «РМ», Баббаджем завладела идея гораздо более революционная его «аналитическая машина». Довольно нескромно, Баббадж писал: «Я пришел к этой мысли таким сложным и запутанным путем, какой, возможно, впервые прошел человеческий ум».[4]
В отличие от созданных ранее машин, «AM» должна была иметь «склад» (память) и «фабрику» (считающее и принимающее решения устройство). Оба устройства должны были быть построены из тысяч цилиндров, сцепленных самым сложным и причудливым образом. Баббадж представлял себе числа, влетающие и вылетающие из «фабрики» под контролем некоторой