Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

В теории множеств, имеющей дело с абстракциями, далекими от повседневной жизни стратификация теории типов еще приемлема, хотя и выглядит натянутой. Когда же дело доходит до языка, важнейшей и ежедневно употребляемой части нашей жизни, такая стратификация кажется абсурдом. Трудно поверить что, разговаривая, мы скачем вверх и вниз по иерархии языков. Довольно обычное высказывание, такое как, например, «В этой книге я критикую теорию типов», было бы дважды запрещено в подобной системе. Во-первых, оно упоминает «эту книгу», которая должна бы упоминаться только в «метакниге», и во-вторых, оно упоминает обо мне — существе, о котором я не должен бы говорить вообще. Этот пример показывает, насколько нелепо выглядит теория типов в повседневном контексте. В данном случае, лекарство хуже самой болезни метод, используемый этой теорией, чтобы избавиться от парадоксов, заодно объявляет бессмыслицей множество вполне правильных конструкций. Эпитет «бессмысленный» кстати, был бы приложим к любому обсуждению теории лингвистических типов (и в частности, к данному параграфу), так как ясно, что никакое из них не может принадлежать ни к одному из уровней — ни к предметному ни к метаязыку, ни к метаметаязыку, и т. д. Таким образом, сам акт обсуждения теории оказывался бы ее грубейшим нарушением.

Конечно, мы могли бы попытаться защитить подобные теории, обговорив, что они имеют дело только с формальными языками, а не с повседневным, обыкновенным языком. Может, оно и так, но тогда такие теории оказываются чисто академическими и имеют дело с парадоксами только тогда, когда те возникают в специальных сделанных по заказу системах. К тому же, стремление уничтожить парадоксы любой ценой, особенно ценой создания чрезвычайно искусственных формализмов, придает слишком много значения плоской последовательности и логичности, и слишком мало — тому причудливому и замысловатому, что придает вкус жизни и математике. Вне сомнения, стараться быть последовательным важно, но когда это старание приводит к созданию удивительно неуклюжих и уродливых теорий, становится ясно, что здесь что-то не в порядке.

В начале двадцатого века, проблемы подобного типа в основах математики вызвали живой интерес к кодификации методов логического мышления. Математики и философы начали сомневаться в том, что даже самые конкретные теории, такие, как теория чисел, построены на прочном фундаменте. Если парадоксы могли возникнуть в теории множеств, основанной на простых интуитивных понятиях, то почему бы им не проникнуть и в другие области математики? А что, если логические парадоксы, такие как парадокс Эпименида, свойственны математике в целом, и, таким образом, ставят всю ее под сомнение? Подобные проблемы тревожили в первую очередь тех — а их было немало — кто твердо верил в то, что математика — лишь один из разделов логики (или, наоборот, что логика — лишь один из разделов математики). Уже сам этот вопрос, «являются ли математика и логика отдельными и непохожими дисциплинами?», вызывал горячие споры.

Изучение самой математики получило название метаматематики или, иногда, металогики, поскольку математика и логика тесно переплетены. Важнейшей задачей метаматематиков было определение природы математических рассуждений. Что является законным методом рассуждений и что — незаконным? Поскольку рассуждения велись на каком-либо «естественном языке», скажем, французском или латинском, всегда были возможны двусмысленные и неясные толкования. Одно и то же слово может иметь разные значения для разных людей, вызывать различные образы, и так далее. Хорошей и важной идеей казалось установление единой нотации, с помощью которой велись бы все математические рассуждения, так чтобы два математика всегда могли договориться о том, верно ли предложенное доказательство. Эта задача потребовала бы кодификации всех общепринятых методов человеческих рассуждений, по крайней мере постольку, поскольку они приложимы к математике.

Последовательность, полнота, и программа Гильберта

Такая кодификация являлась основной идеей системы «Оснований математики» («ОМ»), авторы которой задались целью вывести всю математику из логики, причем без малейших противоречий! Многие восхищались их грандиозным трудом, но никто не был уверен в том, что 1) методы Рассела и Уайтхеда действительно описывают всю математику и 2) эти методы достаточно последовательны и корректны. Действительно ли при следовании этим методам никогда и не при каких условиях не могло возникнуть парадоксов?

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное