Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Дихотомия субъекта и объекта — близкая родственница дихотомии символа и объекта, которая была глубоко изучена Людвигом Витгенштейном в начале этого столетия. Позже для обозначения этого различия были приняты термины «использование» и «упоминание». Квайн и другие подробно описали отношение между знаками и тем, что они обозначают. Но эта глубокая и абстрактная тема занимала не только философов. В нашем столетии как музыка, так и изобразительное искусство испытали кризис, отразивший глубокий интерес к этой проблеме. Музыка и живопись традиционно выражали идеи с помощью некоего набора «символов» (зрительные образы, аккорды, ритмы и тому подобное), сейчас, однако, появилась тенденция исследовать способность искусства не выражать, а просто быть. Например, быть пятнами краски или чистыми звуками, лишенными всякого символического значения.

В частности, на музыку оказал большое влияние Джон Кэйдж со своим новым, напоминающим дзен-буддизм, подходом к звуку. Многие из его сочинений показывают презрение к «использованию» звуков (то есть использованию звуков для передачи эмоциональных состояний) и удовольствие от «упоминания» звуков (то есть создания произвольных комбинаций звуков, не пользуясь заранее установленным кодом, с помощью которого слушатель мог бы расшифровать некое послание). Типичным примером такой композиции является «Воображаемый пейзаж # 4», пьеса для нескольких радио, которую я описал в главе VI. Возможно, что я несправедлив к Кэйджу но мне кажется что его основной целью было привнесение в музыку бессмысленности и наделение значением самой этой бессмысленности. Алеаторная музыка — типичный шаг в этом направлении. Многие современные композиторы последовали за Кэйджем но немногие из них были так же оригинальны. В пьесе Анны Локвуд под названием «Горящий рояль» имитируется звук лопающихся струн, для чего они натягиваются как можно туже, в пьесе Ламонте Юнга источником шума является рояль, который возят туда-сюда по сцене и сталкивают с препятствиями.

В искусстве нашего столетия было множество подобных судорог. Сперва художники отказались от представления действительности, что было по-настоящему революционным шагом — началом абстрактного искусства. Постепенный переход от реалистического представления к чисто абстрактным схемам можно видеть в работах Пьета Мондриана. После того, как мир привык к нерепрезентативному искусству, родился сюрреализм Это был странный поворот, что-то вроде нео-классицизма в музыке, крайне репрезентативное искусство было здесь перевернуто с ног на голову и использовано с совершенно иной целью, чтобы шокировать, сбить с толку и удивить. Школа сюрреализма была основана Андрэ Бретоном и находилась, в основном, во Франции, среди самых влиятельных ее последователей были Дали, Магритт, де Чирико и Тангуй.

Семантические иллюзии Магритта

Из этих художников наиболее чувствующим загадку субъекта и объекта был Магритт (для меня эта загадка является продолжением различия между использованием и упоминанием). Его картины поражают именно этим, хотя зрители обычно не выражают своих впечатлений в таких терминах. Взгляните, например, на странную вариацию на тему натюрморта под названием «Здравый смысл» (рис. 137).


Рис. 137. Рене Магритт. «Здравый смысл» (1945-1946).


Блюдо, полное фруктов — то, что обычно изображается на натюрморте, — здесь стоит на чистом холсте. Конфликт между символом и реальностью велик. Но ирония на этом не кончается, поскольку все это, разумеется, всего лишь картина, — а именно, натюрморт с нестандартным сюжетом.

Серия картин Магритта, представляющих трубку, одновременно очаровывает и приводит в замешательство. Взгляните, например, на «Две тайны» (рис. 138). Внутренний фрагмент картины говорит вам, что символы и трубки различны. Затем ваш взгляд переходит к «настоящей» трубке, плавающей в воздухе. Вы воспринимаете ее, как настоящую, в то время как другая трубка — только символ. Но, разумеется, это совершенно неверно: обе они написаны на плоской поверхности. Идея, что одна из трубок — «картина с двойным вложением» и поэтому в каком-то смысле «менее реальна,» совершенно ошибочна. Вы были одурачены уже в тот момент, когда, приняв изображение за реальность, решили «войти в комнату». Будучи последовательным в вашей доверчивости, вы должны теперь спуститься еще одним уровнем ниже и спутать с реальностью изображение-внутри-изображения. Единственный способ не быть затянутым внутрь иллюзии заключается в том, чтобы видеть обе трубки лишь как цветные пятна на поверхности, отстоящей от вашего носа на насколько сантиметров. Только тогда вы сможете по-настоящему оценить полное значение послания «Ceci n'est pas une pipe» (Это не трубка) — но, к несчастью, в тот самый момент, когда трубки превращаются в цветные пятна на холсте, то же самое происходит с надписью, которая, таким образом, теряет смысл! Иными словами, в этот момент словесное сообщение на картине саморазрушается самым что ни на есть Гёделевым образом.


Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное