Читаем Гёдель, Эшер, Бах. Эта бесконечная гирлянда полностью

Или же какое-то удивительное и дьявольское построение, подобное Гёделеву, не позволит нам проникнуть в эту тайну? Если принять достаточно разумное определение того, что такое «понимание», то я не вижу никаких Геделевых препятствий к постепенному пониманию сути нашего разума. Например, мне кажется вполне разумным желание понять общий принцип работы мозга, так же, как мы понимаем общий принцип работы автомобильного мотора. Это совсем не то, что пытаться понять любой отдельный мозг во всех деталях, — и, тем более, пытаться проделать это с собственным мозгом! Я не вижу никакой связи между Теоремой Гёделя, даже в самой приблизительной интерпретации, и возможностью выполнения этого проекта. Мне кажется, что Теорема Гёделя не накладывает никаких ограничений на нашу способность формулировать и проверять общие механизмы мыслительных процессов, происходящих в нервных клетках. По моему мнению, Теорема Гёделя не противоречит созданию компьютеров (или их преемников), которые смогут манипулировать символами примерно с тем же успехом, как и мозг. Совершенно иное дело — пытаться воспроизвести в программе определенный человеческий мозг, однако создание разумных программ вообще — это более скромная цель Теорема Гёделя запрещает воспроизводство нашего уровня разума с помощью программ не более, чем она запрещает воспроизводство нашего уровня разума с помощью передачи наследственной информации в ДНК. В главе XVI мы видели, как именно замечательный Гёделев механизм — Странная Петля белков и ДНК — делает возможной передачу разума.

Значит ли это, что Теорема Гёделя не привносит ничего нового в наши размышления о собственном разуме? Мне кажется, что это не так, — некая связь здесь есть, но не в том мистическом и ограничительном смысле, как считают некоторые. Думаю, что процесс понимания Гёделева доказательства с его произвольными кодами, сложными изоморфизмами, высоким и низким уровнями интерпретации и способностью к самоотражению может обогатить наше представление о символах и их обработке, что, в свою очередь, может развить наше интуитивное понимание мыслительных структур на разных уровнях.

Случайная необъяснимость разума?

Прежде чем предложить философски интригующее «приложение» Гёделева доказательства, я хочу упомянуть об идее «случайной необъяснимости» разума. Вот в чем она состоит. Может быть, наши мозги, в отличие от автомобильных моторов, представляют собой упрямые и необъяснимые системы, разложить которые никак невозможно. В данной момент мы не знаем, уступит ли мозг нашим усилиям разделить его на уровни, каждый из которых сможет быть объяснен в терминах низших уровней, или же он сорвет все наши попытки его проанализировать.

Но даже если мы и потерпим неудачу в попытке понять самих себя, за этим вовсе не обязательно должна стоять теорема Гёделя. Может быть, наш мозг по чистой случайности слишком слаб для этого. Подумайте, например, о скромном жирафе. Очевидно, что его мозг — намного ниже уровня, необходимого для понимания себя. Тем не менее, он очень похож на наш мозг! Действительно, мозги горилл, эму и бабуинов — и даже мозги черепах или неизвестных существ, намного умнее нас, — действуют, скорее всего, по примерно одинаковому принципу. Жирафы могут находиться намного ниже уровня, необходимого для понимания того, как эти правила сочетаются, чтобы произвести качества разума. Люди могут стоять ближе к этому уровню — чуть-чуть ниже или даже чуть-чуть выше критического порога понимания. Но в этом может не быть никакой принципиальной причины типа Гёделевой, по которой качества разума были бы необъяснимы, — они могут быть вполне понятны существам, стоящим на более высокой ступени развития.

Неразрешимость неотделима от точки зрения высшего уровня

Исключив пессимистическое понятие о врожденной необъяснимости нашего мозга, посмотрим, какие идеи может нам предложить доказательство Гёделя в отношении объяснения нашего мозга/разума. Оно дает нам понять, что взгляд на систему с точки зрения высшего уровня может позволить понять то, что на низших уровнях кажется совершенно необъяснимым. Я имею в виду следующее. Предположим, что в качестве строчки ТТЧ вам дали высказывание Гёделя G. Представьте, что вам при этом ничего не известно о Гёделевой нумерации. Вы должны ответить на вопрос: «Почему эта строчка — не теорема ТТЧ?»

 Вы уже хорошо знакомы с подобными вопросами; например, если бы такой вопрос был задан вам о строчке S0=0, вы ответили бы без труда: «Потому что теоремой является ее отрицание, ~S0=0.» Этот факт вместе с вашим знанием о непротиворечивости ТТЧ объясняет, почему данная строчка — не теорема. Это то, что я называю объяснением «на уровне ТТЧ». Обратите внимание, насколько оно отличается от объяснения того, почему MU — не теорема системы MIU, первое объяснение дано в режиме М, второе — в режиме I.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное