Читаем Гиперпространство: Научная одиссея через параллельные миры, дыры во времени и десятое измерение полностью

Если квантовая теория и противоречит нашему здравому смыслу, то лишь потому, что природе, похоже, до нашего здравого смысла нет никакого дела. Какими бы чуждыми и шокирующими ни казались нам эти идеи, подтверждение им можно легко получить в лабораторных условиях. В этом можно убедиться на примере известного эксперимента с двумя щелями – опыта Юнга. Представьте, что мы направляем пучок электронов на экран с двумя маленькими щелями. За экраном помещена чувствительная фотобумага. Согласно классической физике XIX в. пучки электронов должны оставить на фотобумаге два крошечных пятнышка за щелями. Но когда этот эксперимент провели в лаборатории, то на бумаге обнаружилась картина интерференции (чередование светлых и темных полос), которую принято ассоциировать с поведением, свойственным волне, а не частице (рис. 5.1). (Простейший способ создать такую интерферограмму – вызвать волны в ванной ритмичным похлопыванием по поверхности воды. Похожий на паутину рисунок волн, пересекающихся на поверхности воды, – это и есть результат интерференции, созданной столкновением многочисленных волновых фронтов.) Рисунок на фотобумаге соответствует волне, которая проникла сквозь обе щели одновременно, а затем интерферировала сама с собой за экраном. Поскольку интерференционная картина получилась вследствие коллективного движения множества отдельных электронов и волна прошла сквозь обе щели одновременно, мы наивно приходим к абсурдному выводу, что электроны способны каким-то образом одновременно проникать в обе щели. Но как может электрон быть в одно и то же время в двух местах? Согласно квантовой теории электрон – действительно точечная частица, способная пройти сквозь одну или другую щель, но электрон как волновая функция, распределенная в пространстве, проходит сквозь обе щели, а затем взаимодействует сам с собой. При всем недоверии к этой теории она была неоднократно подтверждена опытами. Как сказал однажды физик Джеймс Джинс, «вероятно, обсуждать, сколько места занимает электрон, так же бессмысленно, как обсуждать, сколько места занимает страх, тревога или неопределенность»{43}. (Однажды в Германии я увидел на бампере наклейку, которая предельно лаконично выражала вышесказанное. Она гласила: «Возможно, здесь ночевал Гейзенберг».)

4. Существует конечная вероятность, что частицы способны совершать «туннельный проход», или квантовый скачок через непроницаемые барьеры.

Это одно из самых потрясающих предсказаний квантовой теории. На атомном уровне оно имело прямо-таки феноменальный успех. Туннелирование, или квантовый скачок через препятствия, выдержало все испытания в лабораторных условиях. В сущности, без туннелирования сейчас трудно представить себе мир.

Простой опыт, демонстрирующий правильность предположения о квантовом туннелировании, начинается с того, что электрон помещают в ящик. В нормальных условиях электрону не хватает энергии, чтобы проникнуть сквозь стенки ящика. Если классическая физика верна, значит, этот ящик электрон не покинет никогда. Но согласно квантовой теории волна вероятности электрона распространится по ящику и просочится в большой мир. Это просачивание сквозь стенку ящика можно точно вычислить с помощью волнового уравнения Шрёдингера; иными словами, есть небольшая вероятность, что электрон находится где-то за пределами ящика. Можно выразиться иначе: есть конечная, но небольшая вероятность, что электрон проникнет через барьер (стенку ящика) и выйдет из ящика. В лаборатории результаты измерения скорости туннелирования электронов сквозь барьеры полностью согласуются с квантовой теорией.

Это квантовое туннелирование, или туннельный эффект, – секрет действия туннельного диода, в чистом виде квантово– механического устройства. Как правило, электричеству не хватает энергии для прохождения через туннельный диод. Но, как и волны, электроны могут проходить сквозь барьеры диода, поэтому с довольно существенной вероятностью электричество появится по другую сторону барьера благодаря туннельному эффекту. Слушая прекрасные звуки стереофонической музыки, помните: вы слышите ритмы, в которых триллионы электронов подчиняются этому и другим удивительным законам квантовой механики.

Если бы квантовая механика была ошибочной, тогда перестала бы функционировать вся электроника, в том числе телевизоры, компьютеры, радио– и стереоприемники и т. д. (Мало того, если бы квантовая теория была неверна, атомы, из которых состоят наши тела, распались бы, и мы бы мгновенно исчезли. Согласно уравнениям Максвелла электроны, вращающиеся в атоме, должны были бы в пределах микросекунды терять свою энергию и проникать в ядро. Квантовая теория предотвращает это внезапное разрушение. Таким образом, сам факт нашего существования – наглядное свидетельство правильности квантовой механики.)

Перейти на страницу:

Похожие книги

Происхождение эволюции. Идея естественного отбора до и после Дарвина
Происхождение эволюции. Идея естественного отбора до и после Дарвина

Теория эволюции путем естественного отбора вовсе не возникла из ничего и сразу в окончательном виде в голове у Чарльза Дарвина. Идея эволюции в разных своих версиях высказывалась начиная с Античности, и даже процесс естественного отбора, ключевой вклад Дарвина в объяснение происхождения видов, был смутно угадан несколькими предшественниками и современниками великого британца. Один же из этих современников, Альфред Рассел Уоллес, увидел его ничуть не менее ясно, чем сам Дарвин. С тех пор работа над пониманием механизмов эволюции тоже не останавливалась ни на минуту — об этом позаботились многие поколения генетиков и молекулярных биологов.Но яблоки не перестали падать с деревьев, когда Эйнштейн усовершенствовал теорию Ньютона, а живые существа не перестанут эволюционировать, когда кто-то усовершенствует теорию Дарвина (что — внимание, спойлер! — уже произошло). Таким образом, эта книга на самом деле посвящена не происхождению эволюции, но истории наших представлений об эволюции, однако подобное название книги не было бы настолько броским.Ничто из этого ни в коей мере не умаляет заслуги самого Дарвина в объяснении того, как эволюция воздействует на отдельные особи и целые виды. Впервые ознакомившись с этой теорией, сам «бульдог Дарвина» Томас Генри Гексли воскликнул: «Насколько же глупо было не додуматься до этого!» Но задним умом крепок каждый, а стать первым, кто четко сформулирует лежащую, казалось бы, на поверхности мысль, — очень непростая задача. Другое достижение Дарвина состоит в том, что он, в отличие от того же Уоллеса, сумел представить теорию эволюции в виде, доступном для понимания простым смертным. Он, несомненно, заслуживает своей славы первооткрывателя эволюции путем естественного отбора, но мы надеемся, что, прочитав эту книгу, вы согласитесь, что его вклад лишь звено длинной цепи, уходящей одним концом в седую древность и продолжающей коваться и в наше время.Само научное понимание эволюции продолжает эволюционировать по мере того, как мы вступаем в третье десятилетие XXI в. Дарвин и Уоллес были правы относительно роли естественного отбора, но гибкость, связанная с эпигенетическим регулированием экспрессии генов, дает сложным организмам своего рода пространство для маневра на случай катастрофы.

Джон Гриббин , Мэри Гриббин

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научно-популярная литература / Образование и наука
Тринадцать вещей, в которых нет ни малейшего смысла
Тринадцать вещей, в которых нет ни малейшего смысла

Нам доступны лишь 4 процента Вселенной — а где остальные 96? Постоянны ли великие постоянные, а если постоянны, то почему они не постоянны? Что за чертовщина творится с жизнью на Марсе? Свобода воли — вещь, конечно, хорошая, правда, беспокоит один вопрос: эта самая «воля» — она чья? И так далее…Майкл Брукс не издевается над здравым смыслом, он лишь доводит этот «здравый смысл» до той грани, где самое интересное как раз и начинается. Великолепная книга, в которой поиск научной истины сближается с авантюризмом, а история научных авантюр оборачивается прогрессом самой науки. Не случайно один из критиков назвал Майкла Брукса «Индианой Джонсом в лабораторном халате».Майкл Брукс — британский ученый, писатель и научный журналист, блистательный популяризатор науки, консультант журнала «Нью сайентист».

Майкл Брукс

Публицистика / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Прочая научная литература / Образование и наука / Документальное
Комично, как все химично! Почему не стоит бояться фтора в зубной пасте, тефлона на сковороде, и думать о том, что телефон на зарядке взорвется
Комично, как все химично! Почему не стоит бояться фтора в зубной пасте, тефлона на сковороде, и думать о том, что телефон на зарядке взорвется

Если бы можно было рассмотреть окружающий мир при огромном увеличении, то мы бы увидели, что он состоит из множества молекул, которые постоянно чем-то заняты. А еще узнали бы, как действует на наш организм выпитая утром чашечка кофе («привет, кофеин»), более тщательно бы выбирали зубную пасту («так все-таки с фтором или без?») и наконец-то поняли, почему шоколадный фондан получается таким вкусным («так вот в чем секрет!»). Химия присутствует повсюду, она часть повседневной жизни каждого, так почему бы не познакомиться с этой наукой чуточку ближе? Автор книги, по совместительству ученый-химик и автор уникального YouTube-канала The Secret Life of Scientists, предлагает вам взглянуть на обычные и привычные вещи с научной точки зрения и даже попробовать себя в роли экспериментатора!В формате PDF A4 сохранен издательский макет.

Нгуэн-Ким Май Тхи

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научно-популярная литература / Образование и наука