Естественно предположить, что при этом большую роль играет черный пигмент, перестающий загораживать сетчатку при слабых освещенностях. Однако, как упоминалось, миграция пигмента у человека еще не доказана.
В главе о свете мы встретились с общим законом действия света: свет может поглощаться и действовать только целыми квантами. Иными словами, нельзя построить прибор, который отвечал бы на энергию меньше кванта, по той простой причине, что свет обнаруживается только по его действиям. Энергия 5·10–18
калорий в секунду (для длины волны 500 mµ) соответствует 52 квантам. Эти 52 кванта «растянуты» на секунду. Отсюда ясно, что мгновенно глаз в состоянии зрительно почувствовать очень небольшое число квантов, т. е. близок по своим свойствам кПользуясь этим, можно глазом обнаружить прерывное, квантовое строение света. Представим себе, что мы смотрим на маленькое, слабо светящееся пятнышко
Рис. 31
Схема наблюдений квантовых флуктуаций света
Таким образом, по законам статистики (если только верна теория квантов) следует ожидать, что при ослаблении источника света, когда за секунду в глаз будет попадать небольшое число квантов, должны возникнуть резкие колебания яркости источника. Если число квантов, попадающих в глаз, будет меньше числа, соответствующего порогу зрительного раздражения, то глаз не ощутит света; наоборот, если число квантов превышает порожное значение, свет будет виден. Следовательно, при постепенном понижении яркости источника должен наступить такой момент, когда источник для глаза должен превратиться из постоянного в мигающий.
Однако в такой простой форме опыт осуществить нельзя и по двум причинам. Во-первых, глазное яблоко, как мы говорили, чрезвычайно подвижно, вследствие чего колебания яркости получаются и при больших интенсивностях. Поэтому глаз следует фиксировать. Это достигается тем, что в стороне от светящейся точки
Далее, глаз обладает свойством сохранять зрительное впечатление; это свойство дало, например, возможность осуществить кино. Но оно же, конечно, будет мешать восприятию быстрых колебаний интенсивности источника света; эти колебания будут сливаться, размываться и усредняться для глаза.
Чтобы обойти это затруднение, можно поступить так. Между глазом и источником помещается диск с одним отверстием (см. рис. 31). Диск совершает один оборот в секунду, оставляя источник открытым для глаза только во время прохождения отверстия (например, в течение одной десятой секунды). При такой установке глаз видит только короткие вспышки через каждую секунду. Если число квантов во время каждой вспышки будет одно и то же и больше порожного значения, то каждому прохождению отверстия будет соответствовать вспышка. Если же число квантов, излучаемое за время прохождения отверстия, подвергается резким статистическим колебаниям, то, очевидно, не всякому прохождению отверстия будет соответствовать видимая вспышка.
Опыт подтвердил это ожидание. Действительно, при больших интенсивностях фиксированный глаз при каждом прохождении отверстия видит вспышку, но при постепенном ослаблении яркости начинают наблюдаться пропуски, которые становятся тем чаще, чем слабее яркость.
Считая число пропусков и вспышек, по законам статистики можно определить среднее число квантов, излучаемое при таких условиях за одну вспышку. Глаз, таким образом, действительно «воочию» позволяет убедиться в квантовой, прерывной структуре света.
Замечательно, что таким способом определяется не чувствительность глаза как целого, а чувствительность только последних клеток (палочек), ответственных за зрительное возбуждение. Найденная до сих пор у разных наблюдателей предельная чувствительность колеблется в широких пределах от двух до нескольких десятков квантов-фотонов. Отдельные кванты стали в буквальном смысле слова видимыми.