Читаем Глаз и Солнце полностью

Заметим еще следующее. Для утомления глазной сетчатки не столько важна полная энергия, входящая в глаз, сколько энергия, приходящаяся на единицу площади изображения на сетчатке. Чем дальше стоит свеча, тем меньше ее изображение; но «удельная яркость», т. е. яркость на единицу поверхности изображения, остается постоянной в широких пределах при передвижении свечи. Если взглянуть на длинный ряд дуговых светящихся фонарей убегающей вдаль городской улицы, то яркость ближних и дальних фонарей кажется почти одинаковой (свет дальних фонарей несколько ослабляется поглощением в запыленном воздухе). Другое дело, если заставить освещаться какую-нибудь поверхность светом первого, второго, третьего фонаря и т. д., в этом случае мы увидим, что освещенность будет чрезвычайно быстро убывать с увеличением расстояния до фонаря. Малосвечная, тусклая лампа, если на нее смотреть в упор, может крайне утомлять глаз, – изображение волосков лампы на сетчатке будет обладать очень большой «удельной яркостью». Вот почему лампы снабжаются рассеивающими свет колбами и абажурами. Забвением этого объясняются частые жалобы, что современные люминесцентные лампы, имеющие вид узких ярких светящихся трубок, вызывают «боль» в глазах. Избавиться от этого можно просто, поставив перед несколькими лампами рассеивающее матовое или молочное стекло. Можно также спрятать лампы так, чтобы они освещали, но их самих не было видно. Проще всего, конечно, не смотреть прямо на лампы, а только на освещенные ими предметы.

До сих пор мы говорили об абсолютной оценке световой энергии глазом. Оценка эта совершенно качественная: большие яркости мы воспринимаем «болезненно», ничтожные – «неприятной напряженностью», есть яркости для нас «удобные и приятные»; но мы не чувствуем ни изменения величины зрачка, ни изменения чувствительности сетчатки; эти процессы не доходят до сознания, а только они и могли бы служить действительной оценкой яркости. Мы резко замечаем только минимальную величину света (порог раздражения), потому что за нею зрительное впечатление полностью исчезает. Поэтому только наличие порога зрительного ощущения дает возможность иногда использовать глаз в качестве прибора для абсолютных измерений величины энергии света.

Но глаз может сравнивать яркости, судить о том, что светлее и что темнее. Суждение само по себе опять качественное, но им нетрудно воспользоваться для количественных измерений. Положим, что две лампы освещают каждая одну из поставленных рядом белых поверхностей (рис. 33). Одна поверхность кажется темнее, другая светлее. Имеется немало способов ослаблять силу света в точно известное число раз (простейший способ – отодвигание лампы). Изменим расстояние одной из ламп во столько раз, чтобы освещаемая ею поверхность казалась нам одинаковой яркости с соседней. Добившись этого, можно сказать, что одна лампа сильнее другой во столько раз, во сколько потребовалось ослабить ее свет. Если справа, например, стояла свеча, а слева 16-свечная лампа, то последнюю для достижения равенства освещенности придется ослабить в 16 раз (например, отодвинуть на расстояние, в четыре раза большее, чем до свечи). Этот прием называется фотометрированием, а соответствующие приборы фотометрами.

В настоящее время существует множество всякого рода фотометров, основанных на фотографическом, фотохимическом и фотоэлектрическом действии света. Эти приборы дают возможность производить измерения не только в видимом, но также и в инфракрасном и ультрафиолетовом свете, притом с большой точностью. Однако сейчас фотометр для нас интересен главным образом потому, что он позволяет обнаружить важные свойства человеческого глаза.


Рис. 33

Схема фотометра


Насколько тонко может судить глаз о том, что две поверхности освещены одинаково? При какой разнице в освещении он заметит это? Пусть, скажем, две поверхности одинаково освещены тысячесвечными лампами, расположенными на расстоянии 1 м от поверхностей; заметим ли мы разницу, если с одной стороны прибавим одну свечу? Опыт показывает, что нет; надо добавить примерно 20 свечей, чтобы разница освещения стала заметной. Отношение наименьшего заметного прироста освещения к основному освещению будет, стало быть, 20: 1000, т. е. 2 %. В таблице 2 приведены значения этого процентного прироста для разных сил света (в свечах) для желтого света с длиной волны 605 mµ.


Таблица 2


Исходная сила света в 200 000 свечей в таблице приблизительно соответствует освещенности прямым солнечным светом. Мы видим, что глаз лучше всего различает разницу в яркостях примерно при силе света в 5000 свечей; при больших и меньших яркостях эта способность уменьшается и необходимый процентный прирост возрастает. Величина прироста почти постоянна (около 2 %) в пределах 200–20 000 свечей.

Перейти на страницу:

Похожие книги

Бозон Хиггса
Бозон Хиггса

Джим Бэгготт, ученый, писатель, популяризатор науки, в своей книге подробно рассматривает процесс предсказания и открытия новой частицы – бозона Хиггса, попутно освещая такие вопросы фундаментальной физики, как строение материи, происхождение массы и энергии. Автор объясняет, что важность открытия частицы заключается еще и в том, что оно доказывает существование поля Хиггса, благодаря которому безмассовые частицы приобретают массу, что является необходимым условием для возникновения материи. Из книги вы узнаете о развитии физических теорий, начиная с античного понятия об атоме, и техническом прогрессе, позволившем их осуществить, а также историю обнаружения элементарных частиц.

Джим Бэгготт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Прочая научная литература / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
«Безумные» идеи
«Безумные» идеи

Книга И. Радунской «"Безумные" идеи» утверждает доминирующую роль «безумных» идей. Не планомерное, постепенное развитие мысли, а скачки в познании, принципиально новые углы зрения — вот что так эффективно способствует прогрессу. Именно от «безумных» идей ученые ждут сегодня раскрытия самых загадочных тайн мироздания.О наиболее парадоксальных, дерзких идеях современной физики — в области элементарных частиц, физики сверхнизких температур и сверхвысоких давлений, квантовой оптики, астрофизики, теории относительности, квантовой электроники, космологии и о других аспектах современного естествознания — рассказывает книга «"Безумные" идеи».Книга «"Безумные" идеи» была переведена на венгерский, немецкий, французский, чешский, японский языки. В Японии за полтора года она была переиздана девять раз.

Ирина Львовна Радунская

Физика