Рис. 92. При продвижении электрода в коре кошки на большое расстояние параллельно поверхности положение рецептивных полей встречающихся клеток изменяется. В данном случае электрод прошел 3 мм и встретился примерно с 60 клетками (их слишком много, чтобы показать на этом рисунке). Здесь отмечены положения только четырех или пяти рецептивных полей, карты для которых составлялись в начале прохождения каждого миллиметра (примерно десятой его части), а остальные поля оставлялись без внимания. В верхней части рисунка показаны рецептивные поля клеток, встретившихся на четырех этапах проходки (0, 1, 2 и 3). Каждая такая группа полей заметно смещалась в поле зрения вправо относительно предыдущей группы. Рецептивные поля клеток группы 2 не перекрываются с полями группы 0, а поля группы 3 — с полями группы 1. В обоих случаях расстояние вдоль коры составляло 2 миллиметра.
Рис. 93. У макака рецептивные поля клеток верхних слоев коры увеличиваются по мере удаления от центральной ямки (которой соответствует отметка 0°). В таком же отношении увеличивается и расстояние между центрами рецептивных полей тех клеток, расстояние между которыми в коре составляет 2 миллиметра.
Нам приходится заключить, что любой участок первичной зрительной коры величиной примерно 2×2 миллиметра должен иметь все механизмы, необходимые для полной обработки определенного участка поля зрения, который очень мал в области центральной ямки и гораздо больше на периферии. Такой участок, получающий, вероятно, десятки тысяч входных волокон от наружного коленчатого тела, перерабатывает поступающую по ним информацию и посылает выходные сигналы по волокнам, чувствительным к ориентации стимула, его движению и т.д., объединяя информацию от обоих глаз. Все участки производят сходные операции над сигналами, поступающими примерно по одному и тому же числу волокон. Информация, получаемая отдельным участком, весьма детальна, если поступает с малой площади в области центральной ямки, и менее подробна, когда приходит с большей площади с периферии сетчатки. Выходные сигналы такого участка вырабатываются без всякого учета того, какой по величине участок поля зрения здесь анализируется и с какой степенью детализации. Набор механизмов для переработки информации в таких участках в основном один и тот же. Это позволяет объяснить ту однородность, которую мы видим и невооруженным глазом, и при микроскопическом исследовании.
Тот факт, что сдвига вдоль коры на 2 мм как раз достаточно, чтобы попасть на проекцию нового участка сетчатки, означает, что какие бы локальные операции ни выполнялись в коре, все они должны выполняться в пределах блока размером 2×2 мм. Очевидно, меньший участок не сможет всесторонне анализировать соответственно меньшую площадку поля зрения, так как для такого анализа нужны все элементы 2-миллиметрового блока. Это ясно уже из рассмотрения данных о положении и размерах рецептивных полей. Однако нам надо будет подробнее обсудить, что означают слова «анализ» и «операция». Можно начать с рассмотрения параметра ориентации линии. В любом участке поля зрения, даже самом малом, должны быть учтены все возможные ориентации. Если при анализе какого-то участка соответствующим корковым блоком величиной 2 мм в этом блоке не окажется элемента, реагирующего на ориентацию +45°, то наличие такого элемента в других блоках коры не поможет, так как другие блоки имеют дело с другими участками поля зрения. Однако, к счастью, ширина ориентационных полос в коре достаточно мала — 0,05 мм, и набор таких полос для всех ориентаций от 0 до 180° с шагом в 10° дважды укладывается на участке коры шириной 2 мм. Так же обстоит дело и с глазодоминантностью — ширина соответствующих колонок 0,5 мм, поэтому 2-миллиметрового блока более чем достаточно для полного анализа. Таким образом, блоки поперечником в 2 мм обладают, по-видимому, полным набором необходимых механизмов.
Рис. 94. Мы называем эту схему «нашей моделью из ледяных кубиков». Схема показывает, как разбита кора одновременно на два вида пластин — для глазодоминантности (для правого и левого глаза) и для ориентации. Эту модель не следует воспринимать буквально — ни одна из этих систем пластин не бывает такой регулярной, особенно ориентационные пластины, которые далеки от того, чтобы располагаться параллельно и иметь прямые границы. Более того, они, по-видимому, не пересекаются под каким-то определенным углом и уж во всяком случае не образуют ортогональную систему вроде показанной на рисунке.