В феврале 1968 года я выступил в МТИ с докладом об этом открытии и был чрезвычайно взволнован, когда заметил среди слушателей Риккардо Джаккони и Херба Гурски. Я чувствовал себя настоящим везунчиком, человеком, который вышел на передний край своей области деятельности.
В следующих главах я познакомлю вас с множеством тайн Вселенной, которые позволила раскрыть рентгеновская астрономия, а также остановлюсь на ряде вопросов, ответы на которые мы, астрофизики, все еще пытаемся найти. В частности, мы совершим путешествие к нейтронным звездам и окунемся в глубины черных дыр. Так что держите крепче ваши шляпы, господа!
12. Космические катастрофы, нейтронные звезды и черные дыры
Нейтронные звезды находятся в самом центре истории рентгеновской астрономии. И они действительно, как говорят, горячие штучки. И не только с точки зрения температуры, хотя их поверхностные температуры нередко достигают свыше миллиона кельвинов, а это более чем в сто раз горячее, чем поверхность Солнца.
Джеймс Чедвик открыл нейтрон в 1932 году, за что получил Нобелевскую премию по физике в 1935-м. После этого экстраординарного открытия, которое, по мнению многих физиков, стало завершающим мазком в картине атомной структуры, Вальтер Бааде и Фриц Цвикки выдвинули гипотезу, что нейтронные звезды формируются в результате вспышек сверхновых. И как впоследствии оказалось, были совершенно правы. Нейтронные звезды возникают в результате поистине катастрофических событий в самом конце жизни массивной звезды, одного из самых быстрых, потрясающих и жестоких происшествий в изученной нами Вселенной – коллапса ядра сверхновой.
Нейтронная звезда начинается не со звезды, похожей на наше Солнце, а со звезды как минимум в восемь раз массивнее. В нашей Галактике приблизительно миллиард нейтронных звезд, но в ней так много звезд самых разных видов, что миллиард следует считать редкостью. Звезды, как и многие другие объекты в мире и во Вселенной, могут «жить» только благодаря своей способности обеспечивать приблизительный баланс безмерно мощных сил. В звездах со сгорающим ядром, в котором термоядерные реакции, проходящие при температурах в десятки миллионов градусов по Кельвину, вырабатывают колоссальное количество энергии, создается огромное внутреннее давление. Температура в ядре Солнца, например, около 15 миллионов кельвинов, и оно вырабатывает за одну секунду энергию, эквивалентную энергии более миллиарда водородных бомб.
В стабильной звезде это давление сбалансировано действием силы тяготения, генерируемой огромной массой звезды. Если же эти две силы – направленное наружу давление термоядерного реактора и направленная внутрь сила гравитации – не сбалансированы, звезда не будет стабильной. Мы знаем, что Солнце существует в известном нам виде уже около пяти миллиардов лет и будет продолжать так жить еще пять миллиардов. Когда звезда собирается умирать, она меняется, и весьма существенно. Если звезда израсходовала б
Самая экстравагантная гибель звезды – гибель в результате коллапса ядра сверхновой, одно из самых энергетических явлений во Вселенной. Постараюсь отдать ей должное. Когда реакция в ядерном реакторе в ядре массивной звезды начинает сходить на нет – в конце концов, никакое топливо не может гореть вечно! – и генерируемое ею давление ослабевает, неустанное и вечное гравитационное притяжение остальной массы решительно берет над ним верх.
Процесс истощения топлива на самом деле довольно сложен, тем не менее весьма увлекателен. Как и большинство звезд, действительно массивные звезды начинают со сжигания водорода и создания гелия. Звезды питаются ядерной энергией – но не деления, а синтеза: при экстремально высоких температурах четыре ядра водорода (протоны) сплавляются в ядро гелия, в результате чего выделяется тепло. Когда у этих звезд заканчивается водород, из-за гравитации их ядра сжимаются, что повышает температуру до показателей, достаточно высоких, чтобы начать связывать гелий до углерода. Звезды с массами, примерно в десять раз превышающими массу Солнца, после сжигания углерода начинают сжигать кислород, потом неон, затем кремний, и в конечном счете у них получается железное ядро.