После каждого цикла горения ядро сжимается, его температура повышается, и запускается следующий цикл. Каждый очередной цикл вырабатывает меньше энергии, чем предыдущий, и короче предыдущего. Для примера скажу, что, в зависимости от точной массы звезды, цикл сжигания водорода может длиться 10 миллионов лет при температуре около 35 миллионов кельвинов, но последний цикл, цикл кремния, продолжается всего несколько дней при температуре около трех миллиардов кельвинов! Во время каждого цикла звезды сжигают большинство продуктов, образовавшихся в предыдущем цикле. Вот что я называю серьезным подходом к переработке!
Конец наступает, когда в результате синтеза кремния получается железо – химический элемент с самым устойчивым ядром из всех элементов периодической таблицы. При синтезе железа в более тяжелые ядра энергия не вырабатывается: этот процесс сам требует энергии, и генерирующий ее реактор останавливается. Железное ядро быстро растет по мере того, как звезда вырабатывает все больше и больше железа.
Когда железное ядро вырастает до примерно 1,4 солнечной массы, оно достигает своего рода магического предела, известного в астрономии как предел Чандрасекара[25]
(кстати, его фамилия связана с именем индийского бога Луны Чандры). В этот момент давление в ядре уже не может противодействовать мощному давлению силы тяготения, и ядро схлопывается, приводя к направленной вовне вспышке сверхновой.Представьте себе огромную армию, осаждающую некогда гордый замок, внешние стены которого начинают разрушаться. (Мне лично вспоминаются сцены из фильма «Властелин колец», в которых бесчисленные армии орков прорываются через стены крепости.) Ядро схлопывается за миллисекунды, и падающая при этом в центр звезды материя – на самом деле она влетает на фантастической скорости, равной четвертой части скорости света, – повышает температуру внутри ядра до невообразимых 100 миллиардов кельвинов, что почти в десять тысяч раз горячее ядра Солнца.
Если масса одиночной звезды меньше двадцати пяти масс Солнца (но больше десяти его масс), коллапс создает в ее центре объект совершенно нового вида – нейтронную звезду. Одиночные звезды с массами от восьми до десяти масс Солнца тоже в конечном итоге рождают нейтронные звезды, но их ядерная эволюция (ее мы обсуждать не будем) несколько отличается от описанного сценария.
При высокой плотности коллапсирующего ядра электроны и протоны сливаются друг с другом. Отрицательный заряд отдельного электрона нейтрализует положительный заряд протона, и они объединяются, создавая нейтрон и нейтрино. Отдельных ядер больше не существует, они исчезают, превращаясь в массу того, что известно как вырожденная нейтронная материя (ну наконец-то впечатляющее название!). Еще мне очень нравится название противодействующего давления – давление нейтронного вырождения. Если масса этой потенциально нейтронной звезды начинает
Верно. Я так и знал, что вы догадаетесь. Что же еще, как не черная дыра – место, где материя не может существовать в любой понятной нам форме, где, если приблизиться, гравитация настолько сильна, что не излучается ничего: ни свет, ни рентгеновские лучи, ни гамма-лучи, ни нейтрино,
Тут следует отметить, что граница между прародителями, формирующими нейтронные звезды, и черными дырами, нечеткая; все зависит от множества факторов, а не только от массы прародителя – например, большое значение имеет вращение звезд.
Но черные дыры действительно существуют – это не плод воспаленного воображения сумасшедших ученых и фантастов, – и это невероятно. Черные дыры связаны с рентгеновской Вселенной – и я к ним еще вернусь, обещаю. Сейчас просто скажу, что черные дыры не только реальны, но и, по всей вероятности, составляют ядро всех достаточно массивных галактик во Вселенной.