Длина волны – это расстояние между двумя гребнями или между двумя межгребневыми пространствами волн. Одной из основных особенностей волн является то, что чем больше частота волны, тем короче ее длина и чем больше длина волны, тем меньше ее частота. И тут мы подходим к чрезвычайно важному набору взаимоотношений в области физики – между скоростью, частотой и длиной волны. Длина волны – это ее скорость, поделенная на ее частоту. Это относится и к электромагнитной волне (рентгеновские лучи, видимый свет, инфракрасные и радиоволны), и к звуковым волнам, и к волнам в океане. Приведу пример: длина волны в воздухе звука в 440 герц (нота ля первой октавы) равна 340, поделенному на 440, то есть 0,77 метра.
Если задуматься хотя бы на минуту, понимаешь, что это абсолютно логично. Поскольку скорость звука постоянна в любой данной среде (за исключением газов, где она зависит от температуры), то чем больше звуковых волн за какой-то конкретный период времени, тем короче они должны быть, чтобы вписаться в это время. Очевидно, верно и обратное: чем меньше волн в определенный период времени, тем длиннее должна быть каждая из них. Что касается длины волны, мы используем разные единицы измерения для разных видов волн. Например, если длина звуковых волн измеряется в метрах, то длины волн света – в нанометрах (один нанометр равен одной миллиардной метра).
А что насчет амплитуды? Представьте опять, что смотрите с лодки на волны в океане. Заметили, что некоторые из них выше других, даже если их длина одинакова? Эта характеристика волны и называется амплитудой. Амплитуда звуковой волны определяет громкость звука: чем больше амплитуда, тем громче звук, и наоборот. Это происходит потому, что чем больше амплитуда, тем больше энергии несет волна. Как скажет вам любой серфер, чем выше океанская волна, тем больше в ней энергии. Энергичнее ударяя по гитарным струнам, вы придаете им больше энергии и производите более громкий звук. Амплитуда водяных волн измеряется в метрах и сантиметрах. Амплитуда звуковых волн в воздухе представляет собой расстояние, на которое молекулы воздуха перемещаются вперед и назад в волне давления, но мы никогда не выражаем ее таким образом. Вместо этого мы измеряем
С другой стороны, высота звука, определяющая, как высоко или низко он находится на музыкальной шкале, зависит от частоты. Чем больше частота звука, тем он выше; чем меньше частота, тем он ниже. Создавая музыку, мы постоянно изменяем частоту (и, следовательно, высоту).
Человеческое ухо способно воспринимать огромный диапазон частот, от около 20 герц (самая низкая нота на фортепиано – 27,5 герц) до примерно 20 тысяч герц. У меня, кстати, есть забавная демонстрация для студентов, в которой я использую специальный аппарат для измерения остроты слуха – аудиометр, умеющий транслировать различные частоты с различной интенсивностью. Я прошу студентов держать руку поднятой до тех пор, пока они слышат звук, и постепенно увеличиваю частоту. Старея, большинство людей теряют способность слышать высокие частоты. Например, мой лимит восприятия высокой частоты находится где-то на уровне 4 тысяч герц, на четыре октавы выше среднего до, в самом конце фортепианной клавиатуры. Но молодые студенты могут слышать гораздо более высокие ноты еще довольно долго после того, как я перестаю что-либо слышать. Я поворачиваю ручку аудиометра выше и выше, до 10 тысяч и 15 тысяч герц, и руки в аудитории постепенно начинают опускаться. На высоте 20 тысяч герц поднято уже не более половины рук. Тогда я несколько замедляю процесс: 21 тысяча, 22 тысячи, 23 тысячи. К тому времени, как я добираюсь до 24 тысяч герц, несколько рук, как правило, еще подняты. В этот момент я обычно прибегаю к небольшой шутке: выключаю аппарат, а сам делаю вид, будто еще повышаю частоту, до 27 тысяч герц. И знаете, всегда находится пара отчаянных душ, которые утверждают, что слышат эти сверхвысокие ноты – до тех пор, пока я не раскрываю свой обман. Получается довольно весело.
Теперь подумайте о том, как работает камертон. Если ударить по нему сильнее, число колебаний его зубцов в секунду не меняется, следовательно, частота производимых им звуковых волн остается неизменной. Именно поэтому он всегда играет ту же ноту. А вот амплитуда колебаний его зубцов при более сильном ударе возрастает. Это можно увидеть, если записать на пленку, как вы ударяете по камертону, а потом воспроизвести запись в замедленном движении. Вы увидите, как зубцы камертона колеблются, причем тем сильнее, чем сильнее вы по ним ударили. Поскольку амплитуда увеличивается, нота становится громче, но так как зубцы продолжают колебаться с той же частотой, она не меняется. Разве это не странно? Однако, если немного подумать, понимаешь, что тут все точно так же, как в маятнике (глава 3
), период колебаний которого (то есть время одного полного колебания) не зависит от амплитуды.