Звуковые волны в космосе?
А сохраняются ли упомянутые выше взаимоотношения между характеристиками звука за пределами Земли? Вам когда-нибудь приходилось слышать, что в космосе нет звуков? То есть как бы энергично вы не стучали по клавишам пианино на поверхности Луны, оно не выдавало бы никаких звуков. Правда ли это? Да, на Луне нет атмосферы, там вместо нее вакуум. Так что вы вполне можете сделать вывод, что, к сожалению, даже самые зрелищные взрывы звезд или мощные столкновения галактик происходят в полной тишине. Можно также предположить, что даже Большой взрыв, первичный взрыв, приведший почти 14 миллиардов лет назад к созданию нашей Вселенной, случился в полной тишине. Но погодите минутку. Космос, как и львиная доля жизни как таковой, значительно запутаннее и сложнее, чем мы думали всего лишь несколько десятилетий назад.
Несмотря то что любой из нас, попытавшись дышать в космосе, быстро погибнет от недостатка кислорода, в действительности космическое пространство, даже глубокий космос, не является идеальным вакуумом. Термины вроде этого всегда относительны. Например, межзвездное и межгалактическое пространство в миллионы раз ближе к вакууму, чем самый идеальный вакуум, который мы можем создать на Земле. И тем не менее факт остается фактом: материя, парящая в космическом пространстве, имеет важные и идентифицируемые характеристики.
Б
Теперь подумайте вот о чем. Везде, где есть материя, можно получить волны давления (и, следовательно, звук), и они будут распространяться в пространстве. А поскольку плазма присутствует в космосе повсюду (в том числе в Солнечной системе), следовательно, там множество звуков, даже если мы и не способны их услышать. Наши уши слышат довольно широкий диапазон частот – фактически более чем в трех порядках величины, – но, к сожалению, природа не оснастила нас механизмами, позволяющими слышать музыку небесных сфер.
Позвольте привести один пример. Еще в 2003 году физики обнаружили рябь в сверхгорячем газе (плазме), окружающем сверхмассивную черную дыру в центре галактики в скоплении Персея, большом кластере из тысяч галактик, расположенном на расстоянии почти 250 миллионов световых лет от Земли. Эта рябь четко указывает на наличие звуковых волн, вызванных выделением большого количества энергии в момент поглощения материи черной дырой. (Черные дыры более подробно обсуждаются в главе 12.) Физики вычислили частоту волн и пришли к выводу, что это си-бемоль, но си-бемоль настолько низкая, что находится на 57 октав (примерно в 1017) ниже до первой октавы, частота которой составляет около 262 герц! Вы можете увидеть эти космические ряби на сайте по адресу: http://science.nasa.gov/science-news/science-at-nasa/2003/09sep_blackholesounds/
.А теперь вернемся к Большому взрыву. Если этот первичный взрыв, приведший к рождению нашей Вселенной, создал волны давления в самой первой материи – которая затем расширилась и впоследствии охладилась, создавая галактики, звезды и со временем планеты, – то мы должны видеть остатки этих звуковых волн. Физики рассчитали, насколько далеко друг от друга должны были находиться ряби ранней плазмы (около 500 тысяч световых лет) и какое расстояние должно разделять их сейчас, после того как наша Вселенная расширяется вот уже более 13 миллиардов лет. Получилось расстояние примерно в 500 миллионов световых лет.