Читаем Глазами физика полностью

На YouTube много забавных и информативных видео, посвященных этой новой технологии. В одном из них мальчик подвешивает в воздухе автоматический карандаш с помощью шести магнитов и куска пластилина; эту демонстрацию вы легко можете воспроизвести в домашних условиях: www.youtube.com/watch?v=rrRG38WpkTQ&feature=related. Но непременно посмотрите еще одно видео, где используется конструкция со сверхпроводником. В нем показана модель вагона поезда, летящая по путям, и даже есть небольшой анимированный пояснительный раздел: www.youtube.com/watch?v=GHtAwQXVsuk&feature=related.

Однако моя наилюбимейшая демонстрация maglev-технологии – замечательный маленький волчок, известный как левитрон. Вы можете увидеть разные версии на сайте www.levitron.com. У меня в кабинете хранится одна из ранних моделей, приводящая в восторг сотни моих посетителей.

Поезда на магнитной подвеске обладают также неоспоримым преимуществом с точки зрения защиты окружающей среды – они относительно эффективно используют электричество и не выделяют при выхлопе газов, вызывающих парниковый эффект. Но их использование, увы, затратно. Поскольку большинство колей для маглевов несовместимы с существующими железнодорожными линиями, строительство этих систем требует огромных авансовых капиталовложений, чем и объясняется тот факт, что они до сих пор не нашли широкого коммерческого применения ни в одной стране мира. А между тем разработка более эффективных и экологически чистых систем массового транспорта, нежели имеющиеся ныне, – абсолютное условие нашего дальнейшего выживания, если только мы не хотим сварить всмятку свою собственную планету.

Максвелл и его экстраординарное достижение

По мнению многих физиков, Джеймс Клерк Максвелл – один из самых великих физиков всех времен, уступающий, возможно, только Ньютону и Эйнштейну. Это ученый внес вклад в широчайший диапазон областей физики, от анализа колец Сатурна до исследования поведения газов, термодинамики и теории цвета. Но самым значимым достижением Максвелла стали четыре уравнения, описывающие и связывающие электричество с магнетизмом, известные ныне как уравнения Максвелла. Хотя они кажутся простыми, в их основе лежат довольно сложные математические концепции. Если вас не пугают интегралы и дифференциальные уравнения, пожалуйста, посмотрите мои лекции или поищите их в интернете, чтобы лучше с ними познакомиться. А мы с вами в рамках данной книги ограничимся более простым обсуждением достижений Максвелла.

Прежде всего он объединил теорию электричества и магнетизма, показав, что, по сути, это не два отдельных явления, а одно – электромагнетизм – только с разными проявлениями. За одним чрезвычайно важным исключением четыре уравнения Максвелла не являются его «законами» или изобретениями, в той или иной форме они существовали и до него. Но именно Максвелл объединил их в то, что теперь принято называть теорией электромагнитного поля.

Первое уравнение – это закон Гаусса для электричества, описывающий взаимосвязь между электрическими зарядами и силой и распределением создаваемых ими электрических полей. Второе уравнение – закон Гаусса для магнетизма – самое простое из четырех и касается сразу нескольких аспектов. В частности, данный закон не допускает существования магнитных монополей. У магнита всегда есть северный и южный полюс (мы называем их диполями), в отличие от электроэнергии, что делает возможными электрические монополи (монополь – это либо положительно, либо отрицательно заряженная частица). Если вы разломаете магнит (у меня на холодильнике их много) на две части, каждая из них будет иметь северный и южный полюс, а если разбить магнит на десять тысяч кусочков, то северный и южный полюс будет у каждого обломка. И способа остаться в итоге с магнитом только с северным магнитным полюсом в одной руке и только с южным магнитным полюсом в другой не существует. А вот если у вас есть электрически заряженный объект (например, положительно) и вы разобьете его на две части, то обе могут быть заряжены положительно.

А дальше начинается нечто действительно интересное. Третье уравнение Максвелла – это уже закон Фарадея, описывающий, как переменные магнитные поля приводят к созданию электрического поля. Совершенно очевидно, что именно этот закон послужил теоретической основой для электрогенераторов, о которых я рассказывал ранее. И наконец, последнее уравнение – это закон Ампера, модифицированный Максвеллом с помощью очень важного уточнения. Оригинальный закон Ампера гласил, что электрический ток генерирует магнитное поле. Но Максвелл окончательно расставил точки над «i», добавив уточнение, что изменение электрического поля также создает магнитное поле.

Перейти на страницу:

Похожие книги

Биология добра и зла. Как наука объясняет наши поступки
Биология добра и зла. Как наука объясняет наши поступки

Как говорит знаменитый приматолог и нейробиолог Роберт Сапольски, если вы хотите понять поведение человека и природу хорошего или плохого поступка, вам придется разобраться буквально во всем – и в том, что происходило за секунду до него, и в том, что было миллионы лет назад. В книге автор поэтапно – можно сказать, в хронологическом разрезе – и очень подробно рассматривает огромное количество факторов, влияющих на наше поведение. Как работает наш мозг? За что отвечает миндалина, а за что нам стоит благодарить лобную кору? Что «ненавидит» островок? Почему у лондонских таксистов увеличен гиппокамп? Как связаны длины указательного и безымянного пальцев и количество внутриутробного тестостерона? Чем с точки зрения нейробиологии подростки отличаются от детей и взрослых? Бывают ли «чистые» альтруисты? В чем разница между прощением и примирением? Существует ли свобода воли? Как сложные социальные связи влияют на наше поведение и принятие решений? И это лишь малая часть вопросов, рассматриваемых в масштабной работе известного ученого.

Роберт Сапольски

Научная литература / Биология / Образование и наука
6000 изобретений XX и XXI веков, изменившие мир
6000 изобретений XX и XXI веков, изменившие мир

Данное издание представляет собой энциклопедию изобретений и инноваций, сделанных в XX и XXI веках. Точные даты, имена ученых и новаторов и названия изобретений дадут полное представление о том, какой огромный скачок человечество сделало за 110 лет. В этой энциклопедии читатель найдет год и имя изобретателя практически любой вещи, определившей привычный бытовой уклад современного человека. В статьях от «конвейерного автомобилестроения» до «фторографен» раскрыты тайны изобретений таких вещей, как боксерские шорты, памперсы, плюшевый медвежонок, целлофан, шариковый дезодорант, титан, акваланг, компьютерная мышь и многое другое, без чего просто немыслима сегодняшняя жизнь.Все изобретения, сделанные в период с 1901 по 2010 год, отсортированы по десятилетиям, годам и расположены в алфавитном порядке, что делает поиск интересующей статьи очень легким и быстрым.

Юрий Иосифович Рылёв

Научная литература / Прочая научная литература / Образование и наука
Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература