Существует так много потенциальных «регрессионных ловушек», что я решил посвятить их рассмотрению всю следующую главу. Пока же будем считать, что на нашем пути ни одна из них не встретится. Регрессионный анализ обладает замечательным свойством вычленять в каждом отдельном случае статистическую связь, которая представляет для нас интерес, например связь между невозможностью человека в достаточной степени контролировать содержание, способы и условия выполнения своей работы и развитием сердечно-сосудистых заболеваний, учитывая при этом другие факторы, которые могут внести в нее искажения.
Как действует данный механизм? Если нам известно, что мелкие государственные служащие Британии курят чаще, чем их начальники, то как нам определить, в какой мере плохое состояние их сердечно-сосудистой системы обусловлено спецификой работы, а в какой – этой пагубной привычкой? Оба фактора кажутся неразрывно связанными между собой.
Регрессионный анализ (выполненный надлежащим образом!) позволяет разделить эти факторы. Чтобы объяснить процесс на интуитивном уровне, мне придется начать с базовой идеи, лежащей в основе всех форм регрессионного анализа, от простейших статистических связей до сложных моделей, разработанных лауреатами Нобелевской премии. По своей сути регрессионный анализ стремится найти «наилучшее приближение» линейной зависимости между двумя переменными. Простой пример – зависимость между ростом и весом людей. Те, кто выше ростом, как правило, весят больше, хотя эта закономерность соблюдается не всегда. Если бы мы построили диаграмму разброса для роста и веса группы студентов-выпускников, то получили бы нечто наподобие того, что уже видели в главе 4.
Если бы вас попросили описать получившуюся картину, вы бы наверняка сказали что-то вроде: «Вес, по-видимому, увеличивается пропорционально росту». Такую догадку вряд ли можно назвать озарением. Регрессионный анализ позволяет нам пойти дальше и «провести линию», которая точнее всего отражает линейную зависимость между этими двумя переменными.
Можно провести множество линий, которые будут отражать соотношение между ростом и весом. Но как знать, какая из них это делает
Обычный метод наименьших квадратов позволяет определить линию, которая минимизирует сумму квадратов разностей, как показано ниже.
Если технические подробности вызывают у вас головную боль, можете не обращать на них внимания. Важно запомнить главное: стандартный метод наименьших квадратов позволяет получить наилучшее описание линейной зависимости между двумя переменными. В результате мы получаем не только линию как таковую, но и – как вы, наверное, помните из курса геометрии в средней школе – уравнение, описывающее ее. Оно известно как уравнение регрессии и имеет следующий вид: