Итак, если сказанное выше в п. 1 верно, то сказанное в п. 2 также должно быть верно, и наоборот. Если какая-то выборка, как правило, хорошо отражает совокупность, из которой она была сформирована, то верно и обратное: совокупность, как правило, будет похожа на выборку, сформированную из нее. (Если дети похожи на своих родителей, то и родители должны быть похожи на своих детей.)
3. Наличие данных о какой-то конкретной выборке и данных о какой-то конкретной совокупности позволяет определить, согласуется ли эта выборка с другой выборкой, которая, возможно, получена из той же совокупности. Здесь речь идет, по сути, о примере с пропавшим автобусом, приведенном в начале главы. Нам известен (приблизительно) средний вес участников марафона. Нам также известен (приблизительно) средний вес пассажиров сломавшегося автобуса. Центральная предельная теорема позволяет нам вычислить вероятность того, что конкретная выборка (упитанные люди в автобусе) была сформирована из данной совокупности (участники марафонского забега). Если эта вероятность невелика, то с высокой степенью уверенности можно заключить, что данная выборка сформирована не из интересующей нас совокупности (например, люди в автобусе отнюдь не похожи на группу бегунов-марафонцев, направляющихся к месту старта).
4. Наконец, если нам известны исходные характеристики двух выборок, то мы можем определить, сформированы ли они из одной и той же совокупности. Вернемся еще раз к становящемуся все более абсурдным примеру с автобусом. Теперь нам известно, что марафонский забег будет проводиться в данном городе – равно как и Международный фестиваль любителей сосисок. Допустим, что в обеих группах тысячи участников и обе наняли десятки автобусов, в каждый из которых поместили произвольные выборки либо бегунов-марафонцев, либо поглотителей сосисок. Допустим также, что при перевозке участников этих мероприятий столкнулись два автобуса. (Я уже признал абсурдность своего примера, поэтому сценарий развития событий не должен вас удивлять. Просто продолжайте спокойно читать дальше.) Будучи, как было сказано выше, одним из видных общественных активистов в городе, вы прибываете на место происшествия и пытаетесь определить, ехали ли оба автобуса на одно и то же мероприятие (фестиваль любителей сосисок или марафонский забег). К несчастью, никто из пострадавших не говорит по-английски, но врачи скорой помощи, оперативно прибывшие на место происшествия, сообщают вам подробную информацию о весе каждого из пассажиров в столкнувшихся автобусах.
Основываясь лишь на этих сведениях, вы можете заключить, куда направлялись эти автобусы: на одно и то же мероприятие или на два разных. Как и прежде, положимся на интуицию. Допустим, что средний вес пассажиров в одном автобусе равняется 157 фунтам при среднеквадратическом (стандартном) отклонении 11 фунтов (это означает, что вес значительной части пассажиров находится в диапазоне от 146 до 168 фунтов). Теперь предположим, что средний вес пассажиров второго автобуса составляет 211 фунтов при среднеквадратическом отклонении 21 фунт (это означает, что вес значительной части пассажиров находится в диапазоне от 190 до 232 фунтов). Забудем на какое-то время о статистических формулах и будем опираться исключительно на логику: представляется ли вам вполне вероятным, что пассажиры обоих автобусов были случайным образом извлечены из одной и той же совокупности?
Вовсе нет. Более вероятным кажется то, что в одном из двух автобусов ехали бегуны-марафонцы, а в другом – любители сосисок. Помимо ощутимой разницы в показателях среднего веса пассажиров двух автобусов, нетрудно также заметить, что разброс в весе
Если на интуитивном уровне все это представляется вам вполне логичным, то вы уже на 93,2 % приблизились к пониманию сути центральной предельной теоремы[40]
. Чтобы придать этому интуитивному выводу некую техническую солидность, нам необходимо продвинуться еще на один шаг вперед. Очевидно, когда вы заглядываете в поломанный автобус и видите там группу довольно упитанных людей в спортивных брюках свободного покроя, у вас тотчас же мелькает догадка, что вряд ли это бегуны на марафонские дистанции. Центральная предельная теорема позволяет нам подвести под свои предположения солидную теоретическую базу и придать им определенную степень уверенности.