Например, исходя из неких базовых вычислений я могу заключить, что в 99 случаях из 100 средний вес пассажиров любого случайным образом выбранного автобуса с бегунами будет отличаться не более чем на девять фунтов от среднего веса всех зарегистрированных участников марафона. Именно это служит статистическим подтверждением моей догадки, когда я натыкаюсь на поломанный автобус с людьми. Средний вес его пассажиров на двадцать один фунт превышает средний вес всех зарегистрированных участников марафона, а это значит, что вероятность принадлежности пассажиров этого автобуса к составу участников забега не превышает 1 шанс из 100. Это позволяет мне с 99-процентной уверенностью отвергнуть гипотезу о том, что встретившийся мне автобус перевозил спортсменов (иными словами, я могу рассчитывать на то, что сделанный мною вывод окажется правильным в 99 случаях из 100).
Правда, согласно теории вероятностей, в среднем я окажусь
Анализ такого рода целиком следует из центральной предельной теоремы, которая, с точки зрения статистики, обладает такой же мощью и элегантностью, как действия Леброна Джеймса на баскетбольной площадке. Согласно центральной предельной теореме, средние значения выборок для любой совокупности будут распределены относительно ее среднего значения примерно по нормальному закону. Ниже я постараюсь разъяснить это положение.
1. Допустим, у нас есть некая совокупность, например все зарегистрированные участники марафона, и нас интересует вес каждого бегуна. Любая выборка участников марафона (например шестидесят бегунов, перевозимых каждым автобусом) будет характеризоваться средним значением их веса.
2. Если делать повторные выборки из всего состава зарегистрированных участников марафона, например формировать случайным образом группы из шестидесяти бегунов, то каждая из этих выборок будет характеризоваться собственным средним значением веса. Это и будут средние значения выборок.
3. Большинство этих средних значений будут очень близки к среднему значению веса для данной совокупности. Какие-то из них окажутся чуть больше, какие-то – чуть меньше. По чистой случайности лишь очень немногие из них будут существенно превышать или быть ниже среднего значения веса для данной совокупности.
Прислушайтесь к этой музыке, поскольку именно сейчас все звуки сливаются в мощное крещендо…
4. Центральная предельная теорема гласит, что эти средние значения выборок будут распределены относительно среднего значения совокупности примерно по нормальному закону. Нормальное распределение, как вы, наверное, помните из главы 2, представляет собой распределение колоколообразной формы (например, велич
5. Все эти утверждения будут истинными, как бы ни выглядело распределение исходной совокупности. Чтобы средние значения выборок были распределены по нормальному закону, вовсе не обязательно, чтобы совокупность, из которой получены эти выборки, имела нормальное распределение.
Рассмотрим реальные данные, например распределение семейного дохода в Соединенных Штатах. Семейный доход в США не распределен по нормальному закону, а, как правило, скошен вправо. В любом данном году никакая из семей не может заработать меньше 0 долларов, поэтому у данного распределения должна быть нижняя граница. Между тем, годовые доходы у какой-то небольшой группы семей могут быть очень велики – сотни миллионов, а в отдельных случаях даже миллиарды долларов. В результате можно ожидать, что распределение семейного дохода в стране будет характеризоваться длинным «хвостом» справа, нечто наподобие этого:
Медиана семейного дохода в Соединенных Штатах составляет примерно 51 900 долларов; средний семейный доход – 70 900 долларов{57}
. (Люди вроде Билла Гейтса сдвигают средний семейный доход вправо; вспомните последствия появления Билла Гейтса в баре, о которых рассказывалось в главе 2.) Теперь допустим, что мы берем случайную выборку из 1000 американских семей и собираем данные об их годовом семейном доходе. Что можно сказать об этой выборке, основываясь на приведенной выше информации и центральной предельной теореме?