Базовый принцип, лежащий в основе центральной предельной теоремы, заключается в том, что большая, надлежащим образом сформированная выборка будет похожа на совокупность, из которой она извлечена. Разумеется, от выборки к выборке будут наблюдаться определенные вариации (например, группа пассажиров в каждом автобусе, направляющемся к месту старта марафонского забега, будет несколько отличаться от группы пассажиров в других автобусах), однако вероятность того, что какая-либо выборка будет
В этом и состоит интуитивная основа центральной предельной теоремы. Воспользовавшись кое-какими статистическими «прибамбасами», можно вычислить вероятность того, окажетесь ли вы правы или неправы. Например, мы можем подсчитать, что в случае, когда речь идет о 10 000 участниках марафонского забега, средний вес которых равняется 155 фунтов, вероятность того, что средний вес случайной выборки из 60 таких бегунов (примерная вместимость одного автобуса) окажется не ниже 220 фунтов, составляет менее одного шанса из 100. Давайте на данном этапе доверимся интуиции; впоследствии у нас будет немало возможностей выполнить соответствующие вычисления.
Центральная предельная теорема позволяет нам сделать перечисленные ниже выводы (их мы детально проанализируем в следующей главе).
1. Располагая подробными сведениями о какой-то совокупности, мы можем сделать далекоидущие выводы о любой надлежащим образом сформированной из нее выборке. Допустим, например, что у директора школы есть детальная информация о результатах сдачи стандартизованного теста всеми учащимися школы (среднее значение, среднеквадратическое отклонение и т. д.). Это значимые характеристики всей совокупности. Теперь предположим, что на следующей неделе ожидается прибытие некоего чиновника окружного управления образования, который намерен провести такой же стандартизованный тест для 100 случайным образом отобранных учеников. Результаты, продемонстрированные этой выборкой учащихся, будут использованы для оценки качества преподавания в данной школе.
Может ли директор школы с уверенностью утверждать, что баллы этих 100 произвольно отобранных учеников будут точно отражать результаты всех учащихся данной школы при сдаче этого теста? Вполне. Согласно центральной предельной теореме, средний тестовый балл группы из 100 учащихся, как правило, не будет существенно отличаться от среднего балла всех учеников данной школы.
2. Располагая подробными сведениями о какой-либо надлежащим образом сформированной выборке (среднее значение и среднеквадратическое отклонение), мы можем сделать чрезвычайно точные выводы относительно совокупности, из которой эта выборка была получена. По сути, это обратный вариант ситуации, которую мы рассматривали в приведенном выше примере. Иными словами, мы должны поставить себя на место чиновника окружного управления образования, который оценивает школы в своем округе. В отличие от директора школы, этот чиновник не располагает результатами (или не доверяет им) сдачи стандартизованного теста всеми учащимися конкретной школы. Вместо этого он проводит в каждой школе аналогичный тест для произвольной выборки из 100 учеников.
Может ли этот чиновник быть уверен, что качество преподавания в какой-либо конкретной школе в целом можно точно оценить, основываясь на результатах сдачи стандартизованного теста группой из 100 учащихся соответствующей школы? Да, может. Центральная предельная теорема гласит, что достаточно большая выборка, как правило, не будет существенно отличаться от генеральной совокупности, а это означает, что результаты, продемонстрированные этой выборкой (то есть баллы 100 случайным образом отобранных учащихся), с достаточной степенью точности отражают результаты соответствующей совокупности в целом (то есть баллы всех учащихся конкретной школы). Разумеется, именно на таком принципе строятся все опросы. Методологически правильный опрос 1200 человек может многое поведать о настроениях всего населения страны.