Мы только что говорили фактически о тех электронах, которые вырываются, например, из металла подогретого катода любой лампы накаливания. В старых ламповых приборах (телевизорах или радиоприёмниках) нити накала ламп всегда светились красным светом. Для чего нити накала (или они же – фактически катоды ламп) подогревались проходящим по ним достаточно большим током накала? Для того, чтобы перевести множество электронов на возбуждённые орбиты. Из теории фотоэффекта мы знаем, что из холодного металла можно выбивать электроны только ультрафиолетовыми фотонами, имеющими высокую энергию порядка энергии ионизации металла из состояния первой орбиты (10–13 эВ). Но в телевизоре мы не применяем никакой ультрафиолет. Но зато сильно подогреваем металл катода лампы, как бы переводя заранее его электроны с нижних уровней на более верхние, когда он может ионизироваться с них уже не ультрафиолетовыми, но фотонами видимого диапазона, и даже не «белыми» или «жёлтыми», но уже «красными», то есть не такими уж и энергичными. Но их энергии уже хватает на то, чтобы выбить электроны – не с нижних орбит (с нижних всё равно не получится), но с «подогретых» верхних. Что и происходило в электронных лампах с подогревающимися катодами. Причём в этих лампах существовала так называемая «сетка». Она располагалась «выше» катода, но ниже ускоряющего анода. На эту сетку подавался отрицательный потенциал по отношению к потенциалу катода, из которого вылетали «подогретые» электроны. И в лампах существовали (как вполне рабочие) такие режимы, когда электроны с катода вылетали, но потом, отталкиваемые отрицательной сеткой, они не прорывались через неё к аноду и, следовательно, не давали никакого анодного тока лампы (где располагалась полезная нагрузка). То есть в этих режимах около катода наблюдалось действительное электронное облако из вылетевших электронов, затем закруглявших свои траектории и затем снова падающих на поверхность металла катода (а эта поверхность всегда удерживает атомные электроны, сохраняя таким образом атомную решётку).
Однако мы сильно отвлеклись от конкретики обсуждаемой темы атомных орбит. Но сначала – снова классика. Напомним школьнику, что такое потенциал
и напряжённость поля. Квантовая физика сильна тем, что она может (наконец-то!) объяснить школьнику физический смысл тех макро-характеристик электростатики и электродинамики (типа «потенциала», «напряжения», «напряжённости»), о которых школьник уже слышал, но очень плохо их понимает (мы это утверждаем, то есть утверждаем то, что школьник плохо понимает все эти характеристики).Итак, во-первых, затронем некоторые основы электростатики. Что такое «заряд» вообще и заряд электрона – в частности? Для электростатики «заряд» – это просто электрическое поле частицы – как поток квантов, «излучаемых», например, электроном («из электрона») во все от него стороны пространства. Электрон – это стандартная космическая частица, которая всегда
пребывает в стандартном космическом эфире, имеющем стандартные космические характеристики (такие как плотность распределения квантов – частиц, скорость их движения, масса этих частиц, их конструкция и наконец – их «полярность» – как некоторое чисто конструктивное отличие друг от друга «положительных» квантов – частиц эфира от «отрицательных» частиц этого же эфира, о чём физики пока ещё абсолютно не знают). Кстати, физики не только не знают, что такое «электрический заряд», но они не знают, что такое электрон.Во-вторых, сейчас (объясняя «заряд») мы находимся внутри атома, где действуют (взаимодействуют) два «заряда»: «заряд электрона» и «заряд протона». Заряд электрона, с точки зрения объяснения характеристик электростатики, мы жаргонно будем называть словом «электрон» и обозначать его символом «
В-третьих, и заряд электрона (как поток – поле всегда излучаемых им частиц эфира), и заряд протона (как аналогичный поток излучаемых им частиц) в атоме (для простоты – одноэлектронном, то есть в атоме водорода), эти потоки – жёстко поляризованы, как и жёстко поляризованы сами частицы – электрон и протон. То есть вся картинка их взаимных полей лежит строго в одной и той же «тонкой-тонкой» плоскости, в пределе имеющей «толщину» размера частицы – электрона, совпадающую с «толщиной» частиц-кварков, из которых состоит протон, которые (эти там кварки) быстро вращаются внутри протона, являя нам некоторое «колёсико», излучающее из себя во все стороны этого «колёсика» суммарное поле протона (но излучающее строго – в плоскости этого колёсика), поле, состоящее, вообще говоря, из суммы полей кварков, но в результате равное по величине (по силе) точно такому же «заряду», который излучает электрон.