Все это однозначно определяет эволюцию масштабного фактора
Теперь зададимся, возможно, провокационным вопросом. А можно ли описать
Рис 9.4. Схема расчёта ускорений
Рассмотрим шар радиуса
Такая задача рассматривалась ещё Ньютоном. Он же и установил, что сила, действующая на
здесь:
Таким образом, ускорение элемента в точке
Но остаётся вопрос: решение было найдено для некоторого центра, в котором ускорение равно нулю, а в других точках имеет вполне определённую величину и направлено к центру. А где такой центр в бесконечной однородной вселенной? На самом деле, никакого выделенного центра нет или, если угодно, таким центром может быть любая точка, Возьмём произвольную точку
Рис. 9.5. Переход к другой системе координат
Перейдём в систему координат с центром в точке
(рис. 9.5). Величины в этой новой системе координат будем обозначать штрихом.
Ускорения в старой и новой системах координат связаны правилом Галилея, которое, если кто забыл, справедливо не только для скоростей, но и для ускорений:
Подставляя в это соотношение выражение для ускорений
Следовательно, наблюдатель в точке
В приведённом выше расчёте распределения ускорений в однородной вселенной не учитывались начальные скорости. Очевидно, что если начальное состояние
Рассмотрим ситуацию, когда есть некоторые начальные скорости, направленные от наблюдателя (от «центра»). Для сохранения однородности в постановке задачи необходимо, чтобы начальная скорость была пропорциональна расстоянию от наблюдателя:
здесь
Вселенная будет расширяться, но скорость расширения будет падать. Из‑за расширения будет уменьшаться плотность, а, следовательно, и ускорение. Что «пересилит»? Если начальная плотность достаточно велика, или, если угодно, мала начальная скорость, расширение через некоторое время сменится сжатием. При достаточно большой начальной скорости расширение будет продолжаться вечно. Качественно ситуация аналогична, например, рассмотрению стартовавшей с Земли ракеты. При скорости, большей второй космической, ракета может преодолеть притяжение и улететь на бесконечность.
В нашем случае также можно определить критическое распределение скоростей, в данном случае это параметр
Но точно так же, можно оперировать с критической величиной плотности, рассчитывая её по отношению к параметру
Подведём итог. Оказывается, что законы расширения, определённые Фридманом, полностью совпадают с описанием, представленным только что на основе ньютоновых законов. Таким образом, ещё Ньютон мог представить картину расширения, соответствующую моделям Фридмана. По этому поводу приведём слова Зельдовича: «Величие открытия Фридмана заключается, может быть, не столько в применении общей теории относительности, сколько в отказе от предвзятого представления о стационарности Вселенной».