Величина
Это открытие заставило раз и навсегда отказаться от понятия статичной Вселенной. Кроме того, предсказанное в решениях Фридмана и Леметра, оно стало ещё одним подтверждением правильности новой теории гравитации.
После открытия Хаббла учёные обратили внимание на распределение скоростей, и обнаружили, что оно изотропно, как и полагалось в решениях Фридмана. Это означает, что наблюдатели, помещённые в различные точки пространства, не обнаружат выделенных направлений. Для каждого из них картина распределения скоростей разбегающихся галактик будет выглядеть как для нас: сферически симметричной. Таким образом, предположения Фридмана были сформулированы в виде
Существует три типа решений Фридмана. Каждому из них соответствует свой тип геометрии пространства однородной и изотропной Вселенной. Для первого типа — 3–мерное пространство, в котором мы себя ощущаем в каждый момент времени, оказывается бесконечным, безграничным и с отрицательным знаком кривизны. Такие пространства называют гиперболическими, а в решениях Фридмана значение радиуса кривизны увеличивается со временем. Для второго типа решений 3–мерное пространство также оказывается бесконечным и безграничным, но не искривлённым; его называют плоским. Первый и второй типы решений называют открытыми. Для третьего типа решений 3–мерное пространство является безграничным, но не
Тип пространства определяется плотностью энергии (или, эквивалентно, массы материи) во Вселенной. Плотность, при которой пространство плоское, называют критической. Если плотность материи меньше критической, то пространство Вселенной будет первого типа, если больше — третьего, Более детальное обсуждение типа космологических решений в зависимости от критической плотности приведено в Дополнении 8.
Поскольку мы уже немного владеем понятием метрики, то здесь будет полезным символически представить метрику решений Фридмана:
Здесь единственной информативной переменной оказывается величина
в законе
Итак, для метрики Фридмана уравнения ОТО превращаются просто в уравнения для
В большой степени на этом уровне для данного типа моделей роль гравитационной теории заканчивается. Далее, в рамках ОТО, самым важным является определение поведения
Существует различие в характере расширения открытых и замкнутых вселенных Фридмана. В первом случае расширение продолжается, хоть и с замедлением, но бесконечно. На рис. 9.3: кривая I — это гипербола и описывает расширение открытого гиперболического мира, кривая II — это парабола и описывает расширение открытого пространственно плоского мира. В третьем случае расширение в определённый момент сменяется сжатием: кривая III на рис. 9.3 иллюстрирует такое поведение.
Рис. 9.3. Изменение масштабного фактора