Читаем Гравитация От хрустальных сфер до кротовых нор полностью

Величина z также очень удобна для оценки возраста объекта, от которого пришёл свет. Действительно, z прямо связано с расстоянием, а расстояния — значительные и для их преодоления необходимо значительное время. Поэтому сигнал приносит информацию об объекте на более ранних стадиях расширения, Чем больше z, тем более ранняя эпоха исследуется. Отметим, что для больших z простую формулу Доплера необходимо корректировать с учётом ОТО.

Это открытие заставило раз и навсегда отказаться от понятия статичной Вселенной. Кроме того, предсказанное в решениях Фридмана и Леметра, оно стало ещё одним подтверждением правильности новой теории гравитации.

После открытия Хаббла учёные обратили внимание на распределение скоростей, и обнаружили, что оно изотропно, как и полагалось в решениях Фридмана. Это означает, что наблюдатели, помещённые в различные точки пространства, не обнаружат выделенных направлений. Для каждого из них картина распределения скоростей разбегающихся галактик будет выглядеть как для нас: сферически симметричной. Таким образом, предположения Фридмана были сформулированы в виде космологического принципа, согласно которому в больших пространственных масштабах во Вселенной нет выделенных областей и направлений. Большинство специалистов согласно с тем, что любая модель Вселенной должна ему удовлетворять. По современным наблюдательным данным материя во Вселенной распределена однородно и изотропно на масштабах больших 50–100 Мпк.

Существует три типа решений Фридмана. Каждому из них соответствует свой тип геометрии пространства однородной и изотропной Вселенной. Для первого типа — 3–мерное пространство, в котором мы себя ощущаем в каждый момент времени, оказывается бесконечным, безграничным и с отрицательным знаком кривизны. Такие пространства называют гиперболическими, а в решениях Фридмана значение радиуса кривизны увеличивается со временем. Для второго типа решений 3–мерное пространство также оказывается бесконечным и безграничным, но не искривлённым; его называют плоским. Первый и второй типы решений называют открытыми. Для третьего типа решений 3–мерное пространство является безграничным, но не бесконечным — его объём конечен. Это пространство с положительным знаком кривизны; его называют замкнутым. В качестве наглядного примера можно привести 2–мерное пространство обычной сферы. Замкнутое пространство можно классифицировать как 3–мерную сферу, экзотические свойства которой мы обсудим ниже. Примеры 2–мерных поверхностей разного типа приведены на рис. 8.6.

Тип пространства определяется плотностью энергии (или, эквивалентно, массы материи) во Вселенной. Плотность, при которой пространство плоское, называют критической. Если плотность материи меньше критической, то пространство Вселенной будет первого типа, если больше — третьего, Более детальное обсуждение типа космологических решений в зависимости от критической плотности приведено в Дополнении 8.

Поскольку мы уже немного владеем понятием метрики, то здесь будет полезным символически представить метрику решений Фридмана:

Здесь единственной информативной переменной оказывается величина a(t), которая называется масштабным фактором и показывает, как меняется расстояние между фиксированными частицами в расширяющейся Вселенной. Именно a(t) определяет постоянную Хаббла:

в законе v = Hr. Напомним, что величина H(t) медленно меняется со временем и постоянна в каждый момент во всем пространстве.

Итак, для метрики Фридмана уравнения ОТО превращаются просто в уравнения для a(t), плотности р и давления р материи. Связь между плотностью и давлением задаётся уравнением состояния. При решении этих уравнений определяется поведение a(t) в зависимости от времени. Таким образом, увеличение a(t) и означает расширение.

В большой степени на этом уровне для данного типа моделей роль гравитационной теории заканчивается. Далее, в рамках ОТО, самым важным является определение поведения a(t), что зависит от динамики материи (наполнителя), её взаимопревращений. Дальнейшее изложение будет посвящено именно этому.

Существует различие в характере расширения открытых и замкнутых вселенных Фридмана. В первом случае расширение продолжается, хоть и с замедлением, но бесконечно. На рис. 9.3: кривая I — это гипербола и описывает расширение открытого гиперболического мира, кривая II — это парабола и описывает расширение открытого пространственно плоского мира. В третьем случае расширение в определённый момент сменяется сжатием: кривая III на рис. 9.3 иллюстрирует такое поведение.

Рис. 9.3. Изменение масштабного фактора

Перейти на страницу:

Похожие книги

Москва и Орда
Москва и Орда

Монография посвящена отношениям Московского княжества и Золотой Орды с конца XIII до начала XVI в. В ней, в отличие от предшествующей историографии, уделявшей серьёзное внимание лишь двум ключевым эпизодам — Куликовской битве и освобождению от власти Орды, — последовательно рассматривается развитие московско-ордынских отношений на протяжении двух с половиной столетий. В результате выясняется, что устоявшиеся (хотя и противоречащие друг другу) постулаты — «поддержка Ордой Москвы» и «борьба с ордынским игом» — мало соответствуют исторической реальности. По-новому решаются такие вопросы, как отношение к Орде первых московских князей — Даниила Александровича и Юрия Даниловича, последствия конфликта Дмитрия Донского с Тохтамышем 1382 г., датировка и обстоятельства освобождения Москвы от ордынской зависимости.Для историков и широкого круга читателей, интересующихся историей Отечества.

Антон Анатольевич Горский

История / Научная литература / Образование и наука
Т. 2.  Ересиарх и К°. Убиенный поэт
Т. 2. Ересиарх и К°. Убиенный поэт

Гийом Аполлинер (1880–1918) — одно из самых значительных имен в истории европейской литературы. Завершив классический период французской поэзии, он открыл горизонты «нового лирического сознания». Блестящий прозаик, теоретик искусства, историк литературы, критик, журналист, драматург — каждая область его творчества стала достоянием культуры XX века.Впервые выходящее трехтомное Собрание сочинений Аполлинера представляет на суд читателя не только избранную лирику Гийома Аполлинера, но прежде всего полный перевод его прозаических сборников «Ересиарх и Кº» (1910) и «Убиенный поэт» (1916) — книг, в которых Аполлинер выступает предвестником главных жанров европейской прозы нашего времени. Аполлинер-прозаик находится в центре традиции, идущей от Гофмана и Эдгара По к Марселю Эме и Пьеру Булю.Во второй том Собрания сочинений вошли сборники рассказов «Ересиарх и Кº» и «Убиенный поэт».

Гийом Аполлинер

Научная литература / Прочая научная литература / Образование и наука