Читаем Гравитация. От хрустальных сфер до кротовых нор полностью

Теперь можно перейти к третьему эффекту, предсказанному Эйнштейном. Поскольку мы ограничились статическим случаем, для которого метрический коэффициент g00 зависит только от пространственных координат, то от бесконечно малых по времени величин можно перейти к конечным. Таким образом, в каждой точке пространства = g00)1/2t. Значит, в общем случае, в каждой точке пространства истинное время течет по-разному в зависимости от значения g00. Для примера возьмем слабое гравитационное поле изолированного тела, которое представлено приближенной метрикой пространства-времени Ньютона. Тогда в приближении слабого поля в окрестности этого тела = t (1 + /c2). А поскольку потенциал по определению отрицателен, то это время течет медленнее по сравнению с координатным. Учитывая, что координатное время совпадает с физическим временем на удалении от тела (на бесконечности), то это замедление можно интерпретировать, как замедление по сравнению с удаленным наблюдателем. Справедливо и более общее утверждение: собственное время течет медленнее по сравнению с наблюдателем, у которого потенциал гравитационного поля слабее.

Теперь вспомним, что частота  электромагнитного сигнала обратно пропорциональна течению времени. Таким образом, в отсутствии гравитационного поля 0~ 1/t. А поскольку в реальности все физические явления в данной точке происходят в темпе истинного времени, то частота электромагнитного сигнала в какой-либо точке в окрестности тела ~ 1/. Поэтому в приближении слабого поля

Это означает, что если в данную точку в окрестности тела сигнал пришел издалека (из бесконечности, где гравитационный потенциал фактически исчезает), то его частота в этой точке станет больше, чем на бесконечности – произойдет так называемое «фиолетовое» смещение. И наоборот, если пошлем сигнал от тяготеющего тела в область плоского пространства-времени, то там он воспримется с меньшей частотой, то есть его спектр сместится в «красную» область. Уменьшение частоты означает уменьшение энергии сигнала. То есть, покидая тяготеющее тело, электромагнитный сигнал ослабевает, что естественно. На рис. 7.3 отображена следующая ситуация.

Рис. 7.3. Замедление времени

Из двух идентичных источников света один расположен на поверхности массивной планеты, другой – далеко, как от нее, так и от всех остальных небесных тел. Наблюдатель находится рядом с последним источником и детектирует свет обоих. Левая картинка соответствует наблюдениям источника на планете, правая – наблюдениям собственного источника. Сравнивая свет от обоих источников, он найдет, что свет от планеты «покраснел» (поскольку его частота меньше частоты его собственного источника), и часы на планете идут медленнее его часов.

Также можно сравнить частоту сигнала, если он посылается между двумя точками пространства с разными гравитационными потенциалами. Снова вернемся к приближению слабого поля для изолированного тела:

Формула означает, что сигнал, испущенный в точке 1, регистрируется в точке 2. Тогда, например, если точка 2 дальше от центра, чем точка 1, то в ней частота станет меньше. Именно последняя формула лежит в основе третьего эффекта. Если его проверять на Земле, то нужно прием ник разместить выше источника. Из формулы следует, что ожидаемая разность частот в наименьшем приближении будет пропорциональной разности h = r2r1 по высоте приемника и источника: / = GMh/c2, где M – масса Земли. Этот эффект на Земле очень слаб.

В 1925 году гравитационное красное смещение света, испускаемого сверхплотной звездой-компаньоном Сириуса, впервые наблюдал американский астроном Уолтер Адамс (1876–1956). Прямой эксперимент по проверке существования гравитационного красного смещения в поле Земли был осуществлен только в 1960 году сотрудниками Гарвардского университета Робертом Паундом и Гленом Ребкой. Они измеряли сдвиг частоты гамма-излучения, пучок которого направляли вверх и вниз на 23 м по вертикали внутри здания лаборатории. Полученное в этом эксперименте значение красного смещения (относительный сдвиг частоты 2.57·10–15) совпало с предсказанием теории Эйнштейна с точностью до 1 %.

<p>Эффект Шапиро</p>
Перейти на страницу:

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука