Если представления о бесконечных пространствах обычно не поражают воображение и не требуют пояснений, то таковые необходимы для последнего случая. Свойства 3-мерной сферы напоминают свойства обычной 2-мерной сферы – поверхности шара. Представим путешественника, движущегося по меридиану от Северного полюса к Южному. Миновав Южный полюс, путешественник начнет возвращаться к Северному, но с другой стороны. Точно так же путешественник в «замкнутом мире» 3-мерной сферы, удаляясь от Земли, достигнет полюса мира на 3-мерной сфере, а затем станет возвращаться к Земле, но с другой стороны.
Но что такое полюс (или противоположная точка по отношению к данной) на поверхности Земли – ясно. А что такое полюс 3-мерной сферы? Вот и начнем объяснения с поверхности Земли. Пусть наблюдатель помещен на Северном полюсе Земли. Пусть радиусами (отрезками меридиана, исходящими из полюса) все большей длины он прочерчивает одну за другой
Аналогично описывается 3-мерная сфера! Определяя некоторую точку на 3-сфере, как Исходный полюс, и удаляясь от него, исследователь будет описывать
Большой взрыв
Что было до большого взрыва? Дело в том, что не было никакого «до».
Пойдем дальше. Если Вселенная расширяется, то это значит, что раньше она находилась в более плотном состоянии. Проведем экстраполяцию назад по времени в соответствии с решениями Фридмана. В конечном итоге все физические и геометрические характеристики обратятся в бесконечность. Это состояние называется космологической сингулярностью, которая мыслится как некая «точка», где даже понятия пространства и времени не имеют смысла. Однако в предельном смысле сингулярность относят к моменту времени
Чтобы представить расширение открытого мира, уместно проводить сравнение с расширением некой бесконечной эластичной простыни. Чтобы представить расширение замкнутого мира, нужно представить надувной шарик. Эти примеры встречаются в каждой соответствующей популярной статье или книжке, но едва ли можно придумать что-то более наглядное. Остановимся на замкнутом мире и обсудим 2-мерное пространство поверхности шарика с равномерно нанесенными на нее метками. Представим, что нет пространства вне шарика. Мало того, нет пространства и внутри шарика. Есть только его поверхность! Такой объект безграничен, но не бесконечен (площадь 2-сферы конечна), точно так же, как 3-мерная сфера замкнутого мира Фридмана. Тогда лучи света будут распространяться по поверхности 2-сферы (им некуда деваться, потому что ничего нет, кроме нее), и, находясь на ней, можно наблюдать все, что происходит даже с противоположной стороны. Шарик начинают надувать, его поверхность увеличивается. Метки на шарике разбегаются друг от друга. Что увидит наш 2-мерный наблюдатель? Хотя плотность меток со временем уменьшается, но в каждый момент времени их распределение будет оставаться однородным. Для всех наблюдателей, помещенных в разные точки поверхности, все метки во всех направлениях убегают одинаково. Это – изотропия!