Итак, если немного отвлечься от парадоксальности инфляционных сценариев рождения Мироздания, то окажется, что нам нужна какая-то очень глубокая теоретическая идея, которая бы связывала абстракции теоремы Пуанкаре — Перельмана и эволюцию реальной ткани пространства-времени нашей Вселенной. Вот тут самое время вспомнить о странном результате, который в начале 20-х годов прошлого века получил работавший в Кенигсбергском университете польский физик Теодор Калуца.
Как и на других ученых, на Калуцу огромное впечатление произвел вывод Эйнштейна о том, что тяготение, являясь физической силой, тем не менее, имеет чисто геометрическую природу, являясь искривленностью четырехмерного пространства-времени. Кроме гравитации, в то время были известны только электромагнитные силы, и Калуца предположил, что они тоже имеют какое-то геометрическое происхождение.
Результат удивительный и… непонятный! Один из тех, о которых говорят: либо просто совпадение, математический фокус, либо отблеск чего-то очень далекого, что еще только предстоит открыть и понять. Эйнштейн, которого Калуца просил рекомендовать его статью в физический журнал, два года колебался, прежде чем удовлетворил просьбу.
Тут-то и пригодилась теория единого суперполя, все компоненты которого — родные сестры. Основываясь на идее Калуцы, всех их можно считать гравитацией в многомерном пространстве-времени.
В физике такое бывает часто: развиваются, казалось бы, не имеющие ничего общего направления, испытывают трудности и заходят в тупик. Внезапно кто-то сообразит, что это разные стороны одного и того же, причем каждая имеет как раз то, чего недостает другой. Но почему тогда мы никак не ощущаем дополнительные измерения? Не входим ли мы в противоречие с реальными фактами?
-132-
Среди большого числа научно-фантастических романов и рассказов, написанных знаменитым английским писателем Гербертом Уэллсом, есть один, где речь идет о необычной Вселенной, четырехмерное пространство которой состоит из бесчисленного количества независимых трехмерных миров, подобных нашему. Однако есть область, где они пересекаются, и там можно попасть в любой из них. Уэллсовская Вселенная похожа на раскрытую книгу, где веер независимых страниц-миров имеет общий корешок.
Можно придумать Вселенную из полностью независимых параллельных миров, каждый из которых, подобно гладкой шелковой ленте, повторяет все изгибы соседнего. Многие писатели-фантасты давно уже продуктивно эксплуатируют подобные идеи.
Ничего подобного в нашем мире не наблюдается (хотя время от времени можно встретить газетные утки с мифической ерундой о якобы наблюдавшихся кем-то и где-то случаях мгновенной телепатии или телекинеза!). Самые тщательные, с огромной точностью выполненные опыты с элементарными частицами (а в этом случае можно получить наибольшую точность) не обнаружили никаких, даже самых малых нарушений причинности.
Рис. 46. Пространство вложенных измерений многообразия Пуанкаре — Перельмана
В своей стандартной и, надо сказать, пока еще общепризнанной модели Вселенная имеет три протяженных пространственных измерения и одно временное. Однако сама по себе
-133-
топология нашего Мира довольно неоднородна, она резко искажается вблизи массивных тел и даже закручивается в воронки у горловин гравитационных коллапсаров. При этом основная идея, касающаяся скрытых дополнительных измерений, остается неизменной: если дополнительные, свернутые циклические измерения нашей Вселенной подобны медным пояскам на вселенской трубе и к тому же являются чрезвычайно малыми, их гораздо труднее обнаружить, чем явно наблюдаемые протяженные измерения. На самом деле, если размер этих измерений достаточно мал, их невозможно обнаружить даже с помощью самых мощных инструментов. Что очень важно, циклическое измерение представляет собой не просто какое-то вздутие внутри привычных протяженных измерений. Напротив, циклическое измерение является новым измерением, оно существует в каждой точке пространства обычных измерений, наряду с измерениями вверх-вниз, влево-вправо и вперед-назад, которые также существуют в каждой точке. Это независимое направление, в котором можно было бы развивать топологические преобразования Перельмана, начиная от метрической сетки обычных пространственных измерений и заканчивая компактифицированными циклическими измерениями.