Чейер заработал в SRI репутацию «следующего Энгельбарта». Он настолько увлекся идеями Энгельбарта, что держал фотографию легендарного ученого-компьютерщика на своем столе, как напоминание о его принципах. К концу 1990-х гг. Чейер был готов к решению новой задачи. Эра доткомов была в полном разгаре, и он решил коммерциализировать свои идеи. Использование интернета при взаимодействии бизнес – бизнес расширялось взрывными темпами, и повсюду были сервисы, которые нуждались в сетевом соединении. Исследование Чейера идеально подходило для недавно ставшей популярной идеи слабосвязанного управления. В мире связанных в сеть компьютеров только начинало разрабатываться программное обеспечение, позволявшее им работать совместно. Он шел тем же путем, что и исследователь искусственного интеллекта Марти Тененбаум, создавший компанию CommerceNet, для которой Том Грубер формировал онтологии.
Чейер был одним из немногих исследователей Кремниевой долины, рано понявших, что интернет станет звеном, объединяющим всю коммерцию. Чейер пришел к одному из конкурентов, VerticalNet, создал там исследовательскую лабораторию и вскоре был назначен вице-президентом по разработке. Как и Грубера, его захватил водоворот доткомов. В какой-то момент рыночная стоимость VerticalNet взлетела до $12 млрд при доходах немного больше $112 млн. Конечно, это не могло продолжаться долго. Он проработал в компании четыре года, а затем вернулся в SRI.
DARPA обратилось к Чейеру с предложением возглавить амбициозный проект национального масштаба по созданию CALO, находившийся под крылом Тони Тетера. DARPA рассчитывало, что он привлечет исследователей искусственного интеллекта со всей страны. Обычно DARPA финансировало сразу несколько исследовательских лабораторий и не интегрировало результаты. Однако на этот раз предполагалось, что разработку CALO будет координировать SRI. Все должны были отчитываться перед командой SRI и работать над одной интегрированной системой. Чейер помог написать первоначальное предложение DARPA и стал архитектором проекта, когда SRI получил заказ. CALO твердо основывался на традиционном символьном подходе первого поколения искусственного интеллекта – планирование, рассуждение и онтологии, – но было и новое направление, которое обозначалась как «обучение в естественной среде».
CALO был похож на небольшой Манхэттенский проект. На пике в нем участвовало более 400 человек, а его результатом стало более 600 исследовательских работ. DARPA потратило на него почти четверть миллиарда долларов, что делает его одним из самых дорогих проектов в области искусственного интеллекта в истории. Участники проекта CALO пытались создать программного помощника с адаптируемостью, как у человека, способного учиться у человека, с которым он работает, и соответственно менять свое поведение.
Когда CALO прошел ежегодные тесты, DARPA было в восторге. Тетер наградил проект за отличные успехи, а часть технологий перешла в проекты ВМС. Но Адам Чейер, как архитектор проекта, испытал сильнейшее разочарование. Джон Маккарти как-то сказал, что для создания «интеллектуальной машины» нужны «1,8 Эйнштейна и десятая часть ресурсов Манхэттенского проекта». Если исходить из оценки Маккарти и учесть, что Манхэттенский проект стоил бы больше $25 млрд в текущих долларах, то на CALO ушло меньше того, что требовалось для создания интеллектуальной машины.
Для Чейера, однако, основным препятствием в проектировании CALO был не дефицит финансирования, а DARPA, пытавшееся мелочно контролировать процесс. Часто ему не удавалось действовать по своему плану, руководство неоднократно отклоняло его идеи. Ему было трудно направлять огромное количество команд, каждая из которых имела собственные приоритеты и получила лишь небольшую часть финансирования от проекта CALO. Призывы Чейера работать совместно над общим проектом, интегрировавшим множество идей в новую «когнитивную» архитектуру, в основном не находили отклика. Его вежливо выслушивали, поскольку хотели получить следующий транш, и создавали программы, но всех в первую очередь интересовали собственные проекты. Большая и бюрократическая программа не могла родить нечто, способное оказать прямое воздействие на реальный мир.