Теперь представьте, что с помощью такого вот "электронного глаза" мы рассматриваем изображение, состоящее только из двух цветов: черного и белого. Очевидно, каждый элемент изображения (напомним, что размером он всего 0,1х0,1 мм) будет представлять собой либо черную, либо белую площадку, напоминая чередованием шахматную доску. Черные площадки практически полностью поглощают падающий на них свет. Яркость отраженного ими света при этом настолько ничтожна, что при просмотре черных площадок ток в цепи фотоэлемента не возникает. Отсутствие тока (нулевое его значение) удобно обозначить цифрой 0. Наоборот, площадки белого цвета почти полностью отражают падающий на них свет, и при попадании на них светового луча ток в цепи фотоэлемента скачком принимает максимальное значение. Обозначим сто цифрой 1. Таким образом, перемещая световое пятно, а вслед за ним и наш "искусственный глаз" вдоль каждой строки изображения, получаем на выходе фотоэлемента последовательность импульсов, которая есть ничто иное, как двоичный цифровой код изображения. Этот код можно либо поместить в электронную память, либо передать по линии связи.
— А как получить ток в виде двоичных импульсов, если изображение имеет плавные переходы от белого цвета к черному, как, например, на фотографии? — спросит читатель. — Ведь в этом случае ток в цепи фотоэлемента будет меняться тоже плавно.
Законный вопрос. Чтобы на него ответить, вспомним, каким образом мы поступали, когда имели дело с плавным изменением звукового давления, точнее, с плавным изменением его "электрической копии" — тока микрофона. В этом случае включали на выходе микрофона АЦП, который с помощью встроенного в него электронного ключа выделял отсчетные значения тока и затем, "взвешивая" их на "электронных весах", вырабатывал двоичный импульсный код.
При двоичном кодировании фотографии нужно прежде всего решить вопрос, с какой частотой АЦП должен брать отсчетные значения тока в цепи фотоэлемента. Ясно, что за промежуток времени, пока "рассматривается" один элемент изображения, нужно взять хотя бы одно отсчетное значение, иначе информация об этом элементе будет пропущена. Например, если световое пятно освещает каждую элементарную площадку изображения в течение 1 с, то и отсчетные значения тока следует брать не реже чем через 1 с. Если же на "рассматривание" элемента изображения тратится времени в 10 раз меньше, т. е. 0,1 с, то каждую секунду нужно выделять, по крайней мере, 10 отсчетных значений. Вот такой интервал.
В современных факсимильных аппаратах световое пятно и фотоэлемент перемещаются вдоль строк изображения с помощью механических систем. Световому лучу удается при этом "пробегать" за 1 с более 2000 элементов изображения — своеобразный световой спринт. Нетрудно подсчитать, что на "просмотр" одного такого элемента приходится отрезок времени, не превышающий 1/2 000 = 0,0005 с = 500 мкс. Через такие интервалы (или чаще, но не реже) и должен выделять отсчетные значения тока АЦП. Заметьте, чтобы не потерять информацию при кодировании звукового сигнала, приходилось брать его отсчетные значения гораздо чаще: через 125 мкс для речи и через 25 мкс для сигналов с более богатой звуковой палитрой — музыки, шума прибоя, щебетания птиц и т. п. Это сравнение не относится к факсимильным аппаратам, предназначенным для передачи газет, где скорость развертки значительно выше: более 200000 элементов изображения в секунду, в результате необходимо брать отсчеты тока в 100 раз чаще — через 5 мкс.
Мы уже упоминали, что для удовлетворительного воспроизведения фотографии достаточно сохранить всего 20 градаций полутонов при переходе от белого тона к черному. Это означает, что каждое отсчетное значение тока должно сравниваться в АЦП с одним из 20 эталонных значений, соответствующим той или иной градации яркости. Для этих целей можно было бы использовать АЦП, кодирующий каждое отсчетное значение 5-разрядным двоичным кодом. Но, поскольку промышленностью выпускаются стандартные 8-разрядные микросхемы АЦП, удобнее использовать их. Кстати, это позволяет сохранять в изображении до 255 градаций яркости и делать тем самым его цифровую копию еще более точной, приближенной к оригиналу.
К сожалению, словесные портреты не гарантируют высокой точности опознания разыскиваемых лиц: часто облик, созданный по указаниям свидетелей, весьма далек от реальности. Наличие у следователя фотографий подозреваемых лиц значительно повышает вероятность опознания. В распоряжении следственных органов имеются фотокартотеки, в которых хранятся тысячи фотографий представителей преступного мира.
Владимир Николаевич Григоренко , Георгий Тимофеевич Береговой , Дарья Александровна Проценко , Иван Николаевич Почкаев , Ростислав Борисович Богдашевский
Фантастика / Любовное фэнтези, любовно-фантастические романы / Астрономия и Космос / Техника / Транспорт и авиация / Боевая фантастика / Космическая фантастика / Прочая научная литература / Образование и наука