Кто из нас в детстве не экспериментировал с акварельными красками и не пытался создать различные цветовые оттенки. Оказывается, любой цвет радуги можно получить, смешивая в определенной пропорции краски только трех цветов — красного, зеленого и синего, которые потому называют основными.
Впервые эта мысль была высказана в речи "Слово о происхождении света, новую теорию о цветах представляющее, в публичном собрании Императорской Академии Наук июля 1 дня 1756 года говоренное Михаилом Ломоносовым", в которой великий русский ученый утверждал о существовании трех родов особой материи — эфира: от первого из них происходит красный цвет, от второго — желтый, от третьего — голубой, а все прочие цвета получаются смешением этих трех. Кстати, нелишне будет заметить, что в современной полиграфии для печатания цветных изображений используются именно данные цвета.
Мы уже упоминали о немецком физиологе Г. Гельмгольце. Это ему принадлежит заслуга в создании научной теории слуха. Он же развил и завершил в 1859–1866 гг. теорию цветного зрения. Помните, сетчатка глаза человека содержит светочувствительные палочки и колбочки? Так вот, колбочки, а их около 6–7 млн, делятся на три группы, из которых каждая чувствительна только к какому-либо основному цвету — красному, зеленому или синему.
И что же это значит, что лучи света, отражаясь от предмета и возбуждая колбочки сетчатки, как бы создают на ней три одноцветных изображения — красное, зеленое и синее? Да, так. Все остальные оттенки рождаются в нашем мозгу в результате сочетания основных цветов. Это как бы природная фантазия цветов.
Указанные свойства сетчатки глаза были использованы в 1903 г. французом Луи Жаном Люмьером (тем самым, который вместе со своим братом Огюстом изобрел кинематограф) для создания цветной фотографии. Люмьер брал зерна крахмала, окрашивал их в красный, зеленый и синий цвета, после чего посыпал этим трехцветным порошком фотопластинку. Современная фотопленка, применяемая, например, для изготовления цветных слайдов, имеет три тончайших слоя эмульсии, на которых получаются три одноцветных изображения — красное, зеленое и синее. В разных местах кадра они имеют разную плотность и, складываясь в разных пропорциях, дают многокрасочную картинку.
Итак, основная идея уже четко прорисована: из цветного изображения нужно получить три изображения в основных цветах. В свою очередь, их можно преобразовать в непрерывные токи и затем в двоичные кодовые импульсы для того, чтобы передать по назначению или поместить в электронную память.
Выделение трех одноцветных изображений — красного, зеленого и синего — из неподвижного или подвижного многокрасочного изображения довольно легко осуществляется цветными светофильтрами, пропускающими только свой цвет и задерживающими все остальные. На выходе каждого светофильтра ставится свой анализатор яркости: перемещающийся фотоэлемент с источником света для неподвижного изображения или передающая телевизионная трубка для подвижного. Чтобы воспроизвести цветное изображение, достаточно совместить на фотопленке, фотобумаге или экране восстановленные обычным путем красное, зеленое и синее изображения.
Ну вот, мы и завершили первую часть нашего повествования об удивительной, поистине магической системе счисления, содержащей всего две цифры, но позволяющей сколь угодно точно отобразить окружающий мир, его звуки, его движение. Всего с помощью двух понятий: один и нуль, или ДА и НЕТ, можно представить необозримые массивы информации — текстовой, звуковой, визуальной. Казавшееся вначале непостижимым, невозможным становится теперь естественным, научным, логичным.
Источниками информации могут быть не только люди или компьютеры. Ими также являются различные датчики (температуры, скорости ветра, смещения и т. п.), машины и механизмы и другие устройства. И любая информация может быть преобразована в цифровую форму! Потребители информации — это люди, компьютеры, машины (различные исполнительные механизмы, такие как роботы, станки, устройства автоматики и пр.). В любом случае, находятся ли источник и потребитель информации рядом или на расстоянии сотен и тысяч километров, информацию нужно уметь передавать. О том, как это делается, и пойдет речь в следующих главах.
НЕОБЫКНОВЕННОЕ ПУТЕШЕСТВИЕ
Медные рельсы
Путешествие по стальной колее… Кто из нас не ездил различными железнодорожными маршрутами? И с каким неподдельным интересом мы вглядывались в мелькающий за окном незнакомый нам мир! Ритмы конца XX — начала XXI в. стремительно меняют все вокруг. Современная стальная колея — это не только рельсы, вокзалы и станции, но и сложнейшие системы автоматики и телемеханики, сигнализации и связи, управления движением. Но сейчас речь пойдет не об этом.
Владимир Николаевич Григоренко , Георгий Тимофеевич Береговой , Дарья Александровна Проценко , Иван Николаевич Почкаев , Ростислав Борисович Богдашевский
Фантастика / Любовное фэнтези, любовно-фантастические романы / Астрономия и Космос / Техника / Транспорт и авиация / Боевая фантастика / Космическая фантастика / Прочая научная литература / Образование и наука