Тем не менее, считает Даммит, говорящий может проявить свое понимание некоторого предложения посредством другой практической способности, а именно способности распознавать условия, которые должны иметь место, чтобы это предложение было истинным. Этот второй способ часто связан с отчетами о наблюдениях. Если, видя перед собой два дерева, человек способен отличить более высокое дерево от менее высокого, то он знает, что значит для одного дерева быть выше другого, а стало быть, знает и то, какие условия должны быть выполнены, чтобы было истинным предложение «Это дерево выше того дерева». Вместе с тем подобное соотнесение условий истинности с практическими способностями по их распознаванию можно осуществить только для тех предложений, которые обладают условиями истинности, доступными для нашего распознавания; иначе говоря, для которых мы располагаем эффективной процедурой, позволяющей нам за конечное число совершаемых действий и в конечный период времени оказаться в ситуации, когда мы можем установить их истинность или ложность. Такие предложения Даммит называет «эффективно разрешимыми», но проблема, по его мнению, состоит в том, что средствами естественного языка можно сформулировать множество предложений, которые не являются эффективно разрешимыми; их Даммит определяет как «неразрешимые». Сюда относятся предложения с квантификацией по бесконечным или необозримым совокупностям, условные предложения в сослагательном наклонении, предложения, содержащие ссылки на недоступные нам пространственно-временные области. Например, предположение Гольдбаха о том, что любое четное число, большее 4, представимо в виде суммы двух нечетных простых чисел, неразрешимо, поскольку у нас нет ни доказательства этого положения, ни доказательства того, что существует противоречащий ему пример, и мы не знаем эффективной процедуры, правильное применение которой дало бы нам доказательство этого положения или противоречащий ему пример. Тем не менее в свете нашего эпистемически неограниченного представления об истине мы и неразрешимым предложениям приписываем наличие у них истинностного значения, которое, правда, нам пока не известно или вообще в принципе не может быть известно. Но как в таком случае мы могли проявить наше знание условий истинности неразрешимых предложений?
Когда мы имеем дело с неразрешимым предложением, считает Даммит, мы не можем поставить знак равенства между способностью распознать выполнение или невыполнение его условий истинности и знанием о том, что представляют собой эти условия, поскольку отсутствие данной способности означало бы тогда, что мы вообще не понимаем неразрешимые предложения, что совершенно не так. Отсюда Даммит делает вывод, что «всегда, когда условие истинности некоторого предложения таково, что мы не можем установить, выполнено оно или нет, кажется очевидным, что нет смысла говорить о