Может показаться странным, что ученым понадобилось так много времени для публичного тестирования давно известной стратегии игры в рулетку. Но ведь и добраться до заветного колеса было не так легко: средства на посещение казино в графе университетских расходов обычно не значатся, так что возможности для проведения исследовательской работы ограниченны. Пирсон полагался на ненадежные данные, полученные из газет, потому что не нашел спонсора, который оплатил бы ему поездку в Монте-Карло, а Торп вряд ли смог бы продолжить свои эксперименты без поддержки Шеннона.
Препятствовала исследованиям и математическая составляющая проблемы. И не потому, что управляющие рулеткой математические законы чересчур сложны, наоборот – они слишком просты. Редакторы научных журналов очень разборчивы в выборе публикаций, и попытки разобраться в поведении «чертова колеса» при помощи школьных знаний – тема не очень для них привлекательная. Впрочем, иногда в печати все же появлялись публикации, посвященные рулетке, например работа Торпа с описанием его метода. И хотя Торп разболтал достаточно, чтобы убедить читателей, в том числе эвдемонистов, что смоделированный на компьютере прогноз может быть успешным, подробности он опустил. Самые интересные вычисления в статье явно отсутствовали.
Уговорив руководство университета приобрести рулетку, Смолл и Цэ попытались воспроизвести стратегию эвдемонистов. Они начали с разделения траектории шарика на три фазы.
Когда крупье запускает колесо рулетки, шарик сначала двигается вокруг его верхнего обода, в то время как центральная часть рулетки крутится в противоположном направлении. В это время на шарик воздействуют две конкурирующие силы: центростремительная сила удерживает его на ободе, а сила притяжения тянет вниз, к центру колеса.
Ученые принимали во внимание, что во время вращения шарика сила трения замедляет его движение. В конце момент импульса шарика уменьшается настолько, что гравитация побеждает. В этой точке шарик переходит во вторую фазу – он сходит с ободка и беспрепятственно движется по дорожке между ободком и дефлекторами. Шарик постепенно смещается к центру колеса до тех пор, пока не столкнется с одним из расположенных на окружности дефлекторов.
До этой точки траекторию шарика может просчитать даже школьник. Но как только он ударяется о дефлектор, его траектория рассеивается, и теоретически он может остановиться в одной из нескольких ячеек. Для игроков это означает, что шарик покидает мир уютной предсказуемости и погружается в подлинный хаос.
С этой неопределенностью Смолл и Цэ могли справиться при помощи статистических измерений. Правда, для простоты они решили свести прогноз к определению числа на рулетке, рядом с которым будет находиться шарик, когда столкнется с дефлектором. Чтобы предсказать точку, в которой шарик будет задевать один из дефлекторов, Смоллу и Цэ необходимы были шесть параметров: первоначальное положение шарика, его скорость и ускорение и аналогичные показатели для рулетки. К счастью, эти шесть параметров можно было свести к трем, если рассматривать траекторию с другой отправной точки. Для стороннего наблюдателя шарик движется в одном направлении, а колесо – в другом. Однако расчеты можно произвести и «с позиции шарика», в этом случае необходимо только измерить, как шарик движется относительно колеса. Смолл и Цэ делали такие расчеты посредством секундомера, фиксируя время прохождения шариком определенной точки.
Написав компьютерную программу для проведения расчетов, Смолл приступил к экспериментальному тестированию системы. Он запустил шарик в рулетке, проводя необходимые измерения вручную, как это делали эвдемонисты. Когда шарик описал около дюжины кругов вдоль обода колеса, Смолл собрал достаточно информации, чтобы предугадать, где он остановится. В этот день он смог провести свой эксперимент 22 раза, прежде чем пришлось закрывать кабинет. Три попытки увенчались успехом – Смолл смог точно спрогнозировать число, на которое выпадет шарик. Если бы он брал случайные числа, вероятность получения такого результата (значение