Научившись измерять квалификацию лошади, исследователи конвертировали полученные данные в прогноз на победу каждой лошади. Они рассчитывали суммарную квалификацию лошадей в забеге и определяли вероятность победы конкретной лошади в зависимости от ее вклада в общий показатель.
Чтобы понять, какие факторы можно использовать для прогнозов, Болтон и Чэпмен применили свою модель к результатам двух сотен забегов. Обработка информации стала поистине актом героизма, потому что данные хранились на десятках компьютерных перфокарт. «Это была огромная коробка, – рассказывала Болтон, – и я годами таскала ее с собой». Перенос данных на компьютер тоже был непростой задачей: на ввод информации по одному забегу уходило около часа.
Из девяти факторов, протестированных Болтон и Чэпменом, наиболее важной для принятия решения о ставке оказалась средняя скорость. А вот вес животного, судя по всему, не играл никакой роли. Либо этот фактор был нерелевантным, либо перекрывался другим, более значимым фактором, так же как фактор воздействия дедушки на внешность внука перекрывается влиянием отцовских генов.
То, какие факторы оказались самыми важными, удивило даже самих исследователей. В ранней версии модели Билла Бентера отмечалось существенное влияние на размер ставки количества предыдущих забегов, в которых участвовала лошадь. Внятного объяснения, почему этот фактор столь значим, не было. Некоторые игроки ссылались на то, что каждый раз имел место «особый случай», но Бентер избегал спекуляций подобного рода. Он знал, что разные факторы могут накладываться друг на друга. Вместо того чтобы анализировать значение каждого из них, он сосредоточился на разработке модели, которая воспроизводила бы результат реального, задокументированного забега. Так же как игроки, выискивавшие рулетку с дефектом, он надеялся получить действенный инструмент прогнозирования без скрупулезного разбора факторов, лежащих в его основе.
Знать, как каждый отдельный фактор влияет на результат, важно не только в тотализаторе. Пока Гальтон и Пирсон изучали механизм наследования, пивоварня «Гиннесс» работала над увеличением срока годности своего стаута. Эту задачу поручили Уильяму Госсету – талантливому молодому статистику, зимой 1906 года прошедшему стажировку в лаборатории Пирсона.
Если игровые синдикаты не имели возможности повлиять на такие факторы, как, например, вес лошади, то «Гиннессу» ничто не мешало изменить состав пива. В 1908 году Госсет при помощи метода регрессии рассчитал количество хмеля, непосредственно влияющее на срок годности пива. Пиво без добавления хмеля могло храниться 12–17 дней, с добавлением оптимального количества хмеля – до нескольких недель.
Бетторы не слишком интересуются тем, какие факторы влияют на результат игры, – им гораздо важнее знать, насколько верны их предсказания. Казалось бы, проще всего проверить эффективность системы прогнозирования по итогам уже состоявшихся забегов. Но здесь возникают свои сложности.
Во время Второй мировой войны будущий исследователь теории хаоса Эдвард Лоренц работал в метеослужбе Воздушного корпуса армии США в Тихоокеанском регионе. Осенью 1944 года его команда выдала серию идеально точных прогнозов о погодных условиях для полетов между Сибирью и островом Гуам. Во всяком случае, по сообщениям летчиков, совершавших рейсы в указанных областях, прогнозы оправдались на все 100 %. Вскоре Лоренц выяснил истинную причину столь невероятной точности: поглощенные выполнением других задач, пилоты вообще не вели наблюдение за погодой и просто повторяли прогноз метеослужбы.
Та же проблема возникает, когда игровые синдикаты проверяют свои прогнозы при помощи данных, которые использовались для калибровки системы. Создать видимость идеальной модели легко. Достаточно выделить для каждого забега некий показатель, характеризующий победителя, а затем обобщить эти показатели в полном соответствии с данными выигравших лошадей. Вам кажется, что вы создали безупречную модель, но на самом деле вы лишь подогнали свой прогноз под заранее известные результаты.
Если игроки хотят узнать, сработают ли их стратегии в будущем, они должны проверять их на
Тестирование на свежих данных помогает убедиться, что модель удовлетворяет научному принципу «бритвы Оккама», суть которого состоит в следующем: если перед вами стоит выбор между несколькими объяснениями наблюдаемого события, лучше всего взять самое простое. Другими словами, если вы хотите построить модель реального процесса, вы должны отсечь от нее все, чему нет объяснения.