Как-то вечером в марте 2004 года в
Уроженку Венгрии и сопровождавших ее двоих сербов обвинили в получении денег обманным путем. Как писала пресса, у мошенников был лазерный сканер, считывавший вращение рулетки. Результаты сканирования передавались на крошечный потайной компьютер, который и предсказывал, где остановится шарик. Гламур, шпионская техника – здесь было все, что нужно для сенсации. Но самое главное журналисты упустили: никто не смог точно объяснить, как можно записать движение шарика в рулетке и конвертировать данные в успешный прогноз. И наконец – разве рулетка не есть сама случайность?
Существует два способа понять принцип действия рулетки, и Анри Пуанкаре интересовали оба. Случайность была одним из множества занимавших его явлений; в начале ХХ века внимание Пуанкаре так или иначе привлекало все, что так или иначе было связано с математикой. Он был последним подлинным «универсалом» в своей дисциплине. Впоследствии ни одному из его коллег не удалось отметиться во всех областях математики и в каждой совершить интересные открытия и установить важные закономерности, как это сделал Пуанкаре.
Пуанкаре полагал, что явления, подобные рулетке, кажутся непредсказуемыми потому, что мы не знаем их причины. Он предложил классифицировать проблемы по степени нашего незнания. Если мы точно знаем первоначальное состояние объекта – например, его положение в пространстве и скорость – и как на него распространяется действие физических законов, то мы имеем дело с обычной задачкой из учебника физики. Пуанкаре назвал это первой степенью незнания: у нас есть вся необходимая информация и нужно лишь произвести несложные вычисления.
Вторая степень незнания – когда мы знаем, как на объект воздействуют физические законы, но не знаем первоначального положения объекта или не можем точно его измерить. В этом случае мы должны либо усовершенствовать систему измерения, либо ограничить область прогнозирования того, что случится с нашим объектом в ближайшем будущем. И наконец, третья, наиболее обширная степень незнания – когда мы не знаем ни первоначального состояния объекта, ни воздействия на него законов физики. Мы также сталкиваемся с третьей степенью незнания, если эти законы слишком сложны, чтобы мы описали их действие. Допустим, мы уронили банку краски в бассейн с водой. Мы можем легко спрогнозировать реакцию купающихся, но прогнозировать поведение молекул краски и воды будет намного труднее.
Однако мы можем попробовать другой подход: не изучать взаимодействие молекул между собой во всех подробностях, а понять общие закономерности. Рассматривая совокупность частиц жидкости, мы сможем проследить, как они будут распространяться и смешиваться, пока спустя определенный период времени краска не окажется рассеянной по всему бассейну. Даже ничего не зная о причине происходящего, мы можем оценить его следствие.
То же самое можно сказать и о принципе действия рулетки. Траектория шарика зависит от множества факторов, которые мы не можем отследить, наблюдая за вращающимся колесом. Так же как с молекулами воды, мы не можем делать прогнозы о конкретном вращении рулетки, если не понимаем общие закономерности, влияющие на траекторию движения шарика. Но, как предполагал Пуанкаре, нам не обязательно знать, что именно заставило конкретный шарик остановиться здесь, а не там. Мы можем просто пронаблюдать множество вращений и сделать выводы.
Именно такими наблюдениями занимались Альберт Хибс и Рой Уолфорд в 1947 году. Оба учились в Чикагском университете, Хибс – на математическом факультете, его друг Уолфорд – на медицинском. Как-то на каникулах приятели отправились в Рино – удостовериться, так ли непредсказуема игра в рулетку, как полагают устроители казино.