Как же все обстоит на самом деле? Последние полтора века математики тщетно пытались доказать дзета-гипотезу Римана. Давид Гильберт включил ее в список из 23 важнейших задач математики в своей знаменитой речи на математической конференции в 1900 году в Париже (а позднее объявил, что это важнейшая задача «не только математики, а вообще»). Гипотеза Римана была единственной из списка Гильберта, которая так и осталась нерешенной за целых сто лет. В 2000 году, в столетнюю годовщину речи Гильберта, группа ведущих математиков планеты провела пресс-конференцию в Колледж де Франс и назвала новый набор из семи «Задач тысячелетия», за решение любой из которых назначалась награда в миллион долларов. (Призовой фонд обеспечивает Математический институт Клэя, основанный бостонским инвестором Лэндоном Т. Клэем.) Никого не удивило, что гипотеза Римана попала и в этот список.
Дзета-гипотеза Римана – не просто ключ к пониманию природы простых чисел. Она настолько важна для математического прогресса, что заранее считается истинной (вероятно, опрометчиво) в предварительных доказательствах тысяч теорем (которые, как говорят математики, «обусловлены» этой гипотезой). Если она окажется ложной, рухнет целая область высшей математики, построенная на ней. (Великая теорема Ферма, доказанная в 1995 году, не играла в математике такой структурной роли и поэтому значительно менее важна.)
Естественно, происхождение у дзета-функции музыкальное. Если ущипнуть скрипичную струну, она при вибрациях порождает не только ноту, на которую настроена, но и все возможные обертоны. Математически эта комбинация звуков соответствует бесконечной сумме ζ(
Эту функцию придумал около 1740 года Леонард Эйлер, который затем сделал замечательное открытие. Он обнаружил, что дзета-функция, бесконечная
Эйлер был величайшим математиком своего времени, но и он не вполне осознал потенциал открытой им формулы бесконечных произведений. «До сегодняшнего дня математики тщетно пытались выявить какой-то порядок в последовательности простых чисел, – писал Эйлер, – и у нас есть причины полагать, что это тайна, в которую человеческий разум никогда не проникнет».
Полвека спустя Карл Фридрих Гаусс сделал первый настоящий прорыв в понимании простых чисел со времен Евклида. Мальчиком Гаусс обожал подсчитывать, сколько простых чисел содержится в каждом отрезке по тысяче. Такие размышления были приятным способом скоротать «скучные четверть часа, – писал он другу, – но потом я бросил это занятие, не добравшись и до миллиона». В 1792 году, в пятнадцать лет, Гаусс заметил интересную закономерность. Хотя на первый взгляд простые числа располагались на числовой оси в случайном порядке, в их потоке в целом все же нашлась некоторая регулярность. Можно было достаточно точно оценить, сколько простых чисел встретится до данного числа, разделив данное число на его натуральный логарифм. Представьте себе, к примеру, что вы хотите узнать, сколько простых чисел найдется до миллиона. Достаньте карманный калькулятор, наберите на нем 1 000 000 и разделите на ln(1 000 000). Получится 72 382. На самом деле простых чисел до миллиона 78 498, поэтому оценка ошибочна примерно на 8 %. Однако при увеличении заданного числа погрешность стремится к нулю.
Гаусс открыл «монетку, которую бросает Природа, чтобы выбрать простые числа» (по словам британского математика Маркуса дю Сутоя). Было что-то немного жуткое в том, что эту монетку надо взвешивать натуральным логарифмом, который родился в непрерывном мире дифференциального исчисления и, казалось бы, не имеет никакого отношения к прерывистому миру натуральных чисел (логарифмическая функция определяется площадью под определенной кривой)[6]
. Гаусс не смог доказать, что натуральная логарифмическая функция в дальнейшем предскажет, что на бесконечности простых чисел становится все меньше и меньше – он просто высказал эмпирическую догадку. Не смог он и объяснить ее приблизительность – почему она не в состоянии точно сказать, где находится следующее простое число.За завесу мнимой случайности удалось заглянуть лишь Риману. В 1859 году в статье, в которой было меньше 10 страниц, он сделал несколько ходов, которые разгадали загадку простых чисел. Начал он с дзета-функции. Эйлер считал, что эта функция охватывает только действительные числа (в множество действительных чисел, соответствующих точке на числовой прямой, входят целые числа, как положительные, так и отрицательные, рациональные числа, выражаемые дробями, и иррациональные числа вроде π или