Читаем Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания полностью

В мысленном эксперименте ЭПР в версии Бома — Ааронова рассматриваются два электрона с одного энергетического уровня, движущиеся в противоположных направлениях. Принцип Паули требует, чтобы электроны имели противоположные спиновые состояния: если спин одного электрона направлен вверх, то спин другого будет направлен вниз. Пока не произведено измерение, невозможно узнать, у какого электрона какой спин. Следовательно, два электрона образуют запутанное квантовое состояние, суперпозицию обоих возможных вариантов ориентации спинов: «вверх-вниз» и «вниз-вверх». Теперь предположим, что экспериментатор измеряет спин одного из электронов с помощью магнитного устройства, а другой исследователь сразу же регистрирует спин другого электрона. Согласно стандартной интерпретации квантовой механики, система мгновенно коллапсирует в одно из своих собственных спиновых состояний: либо «вверх-вниз», либо «вниз-вверх». Поэтому если эксперимент показал, что первый электрон имеет «спин вверх», то другой неизбежно будет обладать «спином вниз». Как в отсутствие непосредственного взаимодействия между электронами второй электрон смог мгновенно «узнать» результат измерения спина первого электрона?

В 1964 году физик Джон Белл исследовал этот вопрос более подробно и разработал математический аппарат для различения стандартной квантовой интерпретации запутанных состояний и альтернативного объяснения с использованием скрытых переменных. Он основывал свои идеи на мысленном эксперименте ЭПР в версии Бома — Ааронова. Теорема Белла критически важна для дальнейшего анализа того, что в действительности происходит, когда наблюдатель производит измерение квантовой системы. Она будет проверена в 1982 году в ходе эксперимента с поляризаторами, проведенного французским физиком Аленом Аспе и его коллегами.

Работы Бома и Белла были посвящены интерпретации квантовой механики, а не ее применению. Более практический вопрос касался расширения квантовой теории поля с целью включения в нее остальных сил помимо электромагнетизма. Целью было обобщить квантовую электродинамику в такую теорию, которая смогла бы описать и другие взаимодействия, такие как ядерные силы и гравитация.

Основной теоретический прорыв в этой области произошел примерно в то же время, что и визит Ромера к Эйнштейну. В начале 1954 года физик Чжэньнин Янг и математик Роберт Миллс опубликовали статью, в которой калибровочная теория поля, предложенная Вейлем, помимо вращательной симметрии дополнялась новой группой симметрии. Напомним, что исходная калибровочная теория, описывающая электромагнетизм, в некотором смысле напоминает вентилятор или флюгер, который может указывать в любом направлении. Таким образом, она обладает вращательной симметрией.

Группу таких симметрии, или группу поворотов окружности, математики обозначают U(1). Ключевым свойством группы U(1) является то, что она абелева. Это означает, что порядок операций на этой группе не имеет значения. Если вы повернете вентилятор на четверть круга по часовой стрелке и затем на треть круга против часовой стрелки, то он окажется в том же положении, что и в случае, если вы измените очередность поворотов.

Работа Янга и Миллса обобщила метод Вейля на случай неабелевых групп симметрии. В качестве простого примера можно привести повороты в трехмерном пространстве, которые могут быть представлены группой SU(2). Возьмите яйцо, аккуратно поставьте на нем точку и поверните его на четверть круга по часовой стрелке вокруг его длинной оси, а затем поверните на треть круга против часовой стрелки вокруг его короткой оси. В отличие от двумерного вращения окружности, если вы измените порядок вращения, метка на яйце перейдет в совсем другую точку. Иными словами, для неабелевых групп, таких как SU(2), порядок операций имеет значение.

Важное свойство калибровочной теории Янга — Миллса (которое позже будет доказано в работах нобелевских лауреатов, голландских физиков Герарда 'т Хоофта и Мартинуса Велтмана) заключается в том, что, как и квантовая электродинамика, она перенормируема. Это означает, что она приводит к конечным ответам. Как оказалось, ее свойства идеально подходят для моделирования слабых и сильных ядерных взаимодействий наряду с электромагнетизмом. Конечно, Эйнштейна не заинтересовало бы объединение взаимодействий, которое содержало бы вероятностные аспекты, такое как квантовая теория поля.

Перейти на страницу:

Все книги серии Pop Science

Двигатели жизни
Двигатели жизни

Всё в нашем мире зависит от бактерий. Долгое время – почти 4 миллиарда лет – Земля была в их полном распоряжении. Именно эти микроскопические двигатели жизни изменили химический состав нашей планеты и сделали мир пригодным для обитания растений, животных и людей.Откуда взялись эти поразительные микроорганизмы? Как они устроены и какие тайны скрывают? Почему жизнь без них невозможна? И почему бактерии – социальные организмы?Известный американский биолог-океанограф Пол Фальковски, член Американского геофизического союза, Американской академии наук и искусств, рассказывает, как и почему бактерии смогли пережить все катаклизмы и приспособиться к меняющейся среде, а также демонстрирует читателю, что всё наше существование стало возможным только благодаря их эволюции, и они – наши истинные предки и настоящие двигатели жизни на Земле.

Пол Фальковски

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания
Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания

Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг. В круг его интересов попадает всё — время и пространство, множественные измерения, темные материя и энергия, космология. Его последняя книга повествует о том, как Альберт Эйнштейн и Эрвин Шрёдингер сражались с несовершенством и недетерминированностью квантовой механики, пытаясь создать теорию поля, которая объединила бы все силы природы и потеснила квантовую странность. К сожалению, оба потерпели фиаско.Сможет ли кто-то из современных ученых превзойти гениев прошлого? Найдется ли новый Эйнштейн, который сможет воплотить его мечту о единой физической теории в жизнь?

Пол Хэлперн

Биографии и Мемуары / Научная литература / Физика / Прочая научная литература / Научпоп / Образование и наука
Остров знаний
Остров знаний

Человеку свойственна тяга к знаниям, но все, что доступно нашим наблюдениям, – это лишь крошечная часть окружающего мира. В книге «Остров знаний» физик Марсело Глейзер рассказывает, как мы искали ответы на самые фундаментальные вопросы о смысле нашего существования. При этом он приходит к провокационному выводу: у науки, нашего основного инструмента познания, есть непреодолимые ограничения.Излагая драматичную историю человеческого стремления все понять, книга «Остров знаний» предлагает исключительно оригинальную трактовку идей многих величайших мыслителей, от Платона до Эйнштейна, рассказывает, как их искания влияют на нас сегодня. Авторитетная и энциклопедическая история смысла и знаний, поведанная в этой книге, рассказывает, что такое «быть человеком» во Вселенной, полной тайн.

Марсело Глейзер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги