В июле 1912 года, поработав около года в Университете Цюриха и чуть более года в Университете Праги, Эйнштейн вернулся в Цюрих, чтобы занять должность в своей альма-матер. Швейцарской высшей технической школе Цюриха (ЕТН). Одним из главных достоинств этого места, помимо работы в любимой Швейцарии, была возможность посотрудничать с другом Гроссманом, профессором математики. Новая должность оказалась удобной для разработки общей теории относительности. Эйнштейн быстро погружался в зыбучие пески высшей математики и нуждался в сильной руке, которая вытащила бы его на безопасное место. Бывший однокурсник, помогавший Эйнштейну с математикой в университете, стал незаменимым помощником в поисках геометрического описания гравитации.
Гроссман мало интересовался физикой, но с энтузиазмом подключился к проекту Эйнштейна. Он прочитал Эйнштейну ускоренный курс геометрии Римана, в том числе научил его работать с тензорами, описывающими свойства неевклидовых, многомерных многообразий. (Напомним, что тензоры — это математические объекты, которые преобразуются определенным образом, а многообразия — это поверхности с произвольным числом измерений.) Он также познакомил Эйнштейна с работами немецкого математика Элвина Кристоффеля, итальянского математика Грегорио Риччи-Курбастро и его студента Туллио Леви-Чивита, внесших большой вкладе дифференциальную геометрию.
Неоценимая помощь Гроссмана вернула Эйнштейну надежду выразить свои идеи в математической форме. Эйнштейн лихорадочно работал над теорией, временно отказавшись от всех других научных занятий. Когда Зоммерфельд пригласил его в Мюнхен выступить с докладом о квантовой теории, он отказался, написав в ответ: «Я сейчас занят исключительно проблемой гравитации и полагаю, что я могу преодолеть все трудности с помощью моего друга-математика. Но одно можно сказать наверняка, никогда прежде я не беспокоился так сильно о чем-либо, я стал с большим уважением относиться к математике, более тонкие детали которой до сих пор, в своем невежестве, я считал излишней роскошью! По сравнению с этой проблемой первоначальная теория относительности выглядит просто по-детски»{29}.
Одно время Эйнштейн так часто приходил домой к Гроссману по вечерам, что пожилая горничная устала спускаться по лестнице, чтобы открывать ему дверь. И Эйнштейн предложил Гроссману «оставить входную дверь открытой, чтобы не беспокоить старушку»{30}. В течение года Эйнштейн и Гроссман работали над предварительным вариантом своей теории, который Эйнштейн представил на Венской конференции 1913 года. Историки называют эту раннюю форму
В специальной теории относительности наблюдатели, путешествующие с постоянными по отношению друг к другу скоростями, обнаруживают одинаковые законы физики. Например, уравнения Максвелла выглядят одинаково для обоих наблюдателей. Одна из ключевых целей Эйнштейна при создании общей теории относительности заключалась в том, чтобы расширить принцип относительности и на наблюдателей, движущихся по отношению друг к другу с ускорением. В отличие от механики Ньютона, где предпочтительными были инерциальные (или неускоренные) системы отсчета, Эйнштейн хотел, чтобы его теория годилась для всех случаев жизни. Исследователь в лаборатории, находящейся в вагоне тормозящего перед станцией поезда, или на карусели, вращающейся по кругу, должен иметь возможность описывать свои эксперименты с помощью той же физики, что и исследователь, работающий в обычном здании. Математически это означает, что уравнения движения должны иметь одинаковую форму как для ускоренных (включая ускорение, замедление и вращение), так и для инерциальных систем отсчета. Эйнштейн назвал такое условие «общей ковариантностью».
К сожалению, Эйнштейн пришел к выводу, что «Проект» не отвечает поставленной цели: обеспечить независимость от выбора системы отсчета. Он недотягивал до идеала Маха — требования исключить предпочтительность инерциальных систем отсчета и установить своего рода демократию для всех видов движения, включая ускоренные. Вместо этого все еще существовала «элита», в которую входили только некоторые виды систем отсчета. Эйнштейн обратился к другому своему бывшему сокурснику, Мишелю Бессо, за советом относительно научной корректности «Проекта». Если теория верна физически, возможно, он мог бы смириться с определенными математическими ограничениями, такими как отсутствие общей ковариантности. Эйнштейн настойчиво защищал свои идеи, но отказывался от них в мгновение ока, если видел более эффективный путь. Некоторое время он пытался убедить себя, что общая ковариантность не является необходимой для полной теории, если уравнения получаются простыми и дают физически достоверные результаты.