Читаем Иллюзия пользователя. Урезание сознания в размерах полностью

Позже в том же году Чаитин написал в «Scientific American»: «Какое влияние на математику могли оказать неполнота теоремы Геделя, проблема остановки Тьюринга и моя собственная работа? Смысл в том, что большинство математиков предпочитают не обращать внимания на эти результаты. Конечно, они согласны с принципом того, что любой конечный набор аксиом не является полным — но на практике они исключают этот факт, как не оказывающий непосредственного влияния на их работу. К сожалению, однако, иногда он все же влияет. Несмотря на то, что оригинальная теорема Геделя, судя по всему, применима только к необычным математическим утверждениям, которые не представляют особого практического интереса, алгоритмическая информационная теория показала, что неполнота и случайность являются естественными и повсеместно распространенными».

Математика, судя по всему, слишком важна, чтобы оставить ее только математикам.

Чаитин согласился бы с этим. «Тот факт, что многие математические задачи оставались нерешенными сотни и даже тысячи лет, только подтверждает мое утверждение.

Математики стойко предполагают, что невозможность решения этих проблем заключается только в них самих — но не может ли быть так, что проблема заключается не только в неполноте их аксиом?» Он добавляет: «Это может казаться большинству математиков нелепым предположением — но для физика и биолога оно не будет столь уж абсурдным».

«Это вопрос, который поистине достоин Уотергейта: что знает демон Максвелла — и когда он это знает?» — с большим энтузиазмом сказал Войцех Зурек в своем вступительном обращении на семинаре по степени интеграции, энтропии и информационной физике в Институте Санта Фе в 1990 году.

Идея Зурека была довольно хороша, как он объяснил на первой встрече группы двумя годами ранее. Его обращение называлось «Алгоритмический информационный контент, тезис Черча-Тьюринга, физическая энтропия и демон Максвелла». Его идея соединяла воедино эти до того времени несоединимые области физики и математики.

В числе слушателей были Ландауэр и Беннетт. Зурек процитировал их решение задачи демона Максвелла — решение, которое указывало, что проблемой демона было забывание того, что он узнал: как только он узнал, где находятся все молекулы в контейнере и как они движутся. В направлении самых быстрых из них в одну камеру, он, конечно, преуспел — но теперь ему придется очень много забыть. Проблема заключалась не в том, как думали Сцилард и позже Бриллоун, чтобы узнать, где находятся молекулы. Проблема заключалась в том знании, которое приобретает демон. Ландауэр доказал: чтобы избавиться от этой информации, придется платить; Беннетт доказал, что цена этого искупает второй закон термодинамики. Демон не сможет обеспечить энергию для вечного двигателя.

Но затем Зуреку пришла идея: а что, если демон настолько умен, что сможет сжимать свое знание? Что, если он сможет описать движение молекул в очень краткой форме, так что очистка его памяти не будет обходиться слишком дорого? Если бы он мог помнить, к примеру, что все более быстрые молекулы имеют определенное расположение (на дне контейнера), это описание бы не требовало слишком большого количества бит — а затем он мог бы это забыть? Смог ли бы этот интеллектуальный демон создать вечный двигатель и нарушить наше видение мира?

С большим удовольствием Зурек описал, как ему удалось решить эту задачу: существуют пределы того, насколько умным может быть демон. Физические пределы. Он не сможет описать схему движения молекул способом, который был бы менее сложным, чем само это движение — а физические законы дают нам минимальный уровень сложности, который применим к вещам.

Конечно, для того, чтобы описать ситуацию, при которой все молекулы собираются в левой части контейнера, много бит не потребуется. Но с физической точки зрения такая ситуация крайне маловероятна — это как раз такая ситуация, которую демон попытается применить в своей умной попытке выиграть.

Следовательно, демону придется принять во внимание тот факт, что в скоплении молекул, которое находится в равновесии, всегда наблюдается беспорядок — и описание его не может быть более коротким, чем этот беспорядок. Нарушения равновесия возможны — но они редки и ничего не будут значить в долгосрочной перспективе.

Таким образом Зурек перевел физический беспорядок в категорию описания. Ключом к этой операции, как было доказано, является алгоритмическая теория информации, так как огромное скопление молекул может быть описано очень длиной цепью цифр. Они появляются в результате того, что все молекулы измеряются и взвешиваются с головы до пят: результат — серия чисел.

Сложность этих чисел должна отражать сложность описания состояния молекул. Как раз потому, что мы имеем дело со случайным движением тепла, числа, которые будут описывать молекулярное движение, будут включать в себя большой элемент случайности. Основная характеристика подобной случайности заключается в том, что она не может быть описана произвольно кратко.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже