Поскольку с увеличением расстояния свет становится «менее ярким», рассеивая свою энергию на большей площади, самый простой способ получить яркое изображение такого сильно удалённого объекта, как звезда, — это собрать как можно больше его света и сфокусировать его весь на изображении. Это основная функция телескопа и та причина, по которой в делах, касающихся телескопов, при прочих равных условиях, чем больше, тем лучше. Свет, допустим, с Денеба, падает на всей площади Земли с одинаковой интенсивностью (энергия на единицу площади за единицу времени). Яркость изображения, создаваемого телескопом, определяется общей энергией, поступившей в фокус, и это просто интенсивность, умноженная на площадь основной линзы или зеркала (объектива) телескопа. Полностью открытый глаз человека обычно собирает свет из круглой области диаметром около 6 мм, поэтому 50-миллиметровый бинокль или телескопический объектив (как в биноклях 7 × 50) формирует изображение примерно в 70 раз ярче, чем вы можете увидеть без него. Двухсотдюймовый телескоп на горе Паломар даёт вам выигрыш в яркости более чем в 700 000 раз, или примерно на четырнадцать звёздных величин. Иными словами, это позволяет вам видеть звёзды величиной вплоть до примерно двадцатой, а не до шестой. (Здесь подразумевается прямое визуальное наблюдение, которым профессиональные астрономы пользуются редко. На самом же деле они находятся в ещё большем выигрыше и видят ещё больше звёзд, невидимых в ином случае, когда фиксируют их изображения с длительной выдержкой на чувствительных фотопластинках или плёнке.)
ЯРКОСТЬ ЗВЁЗД И ЗВЁЗДНАЯ ВЕЛИЧИНА
Яркость звёзд выражает звёздная величина
. Исторически сложилось так, что самые яркие звёзды неба описывались как звёзды «первой величины». Чуть менее ярким звёздам была присвоена «вторая величина», и так далее. Когда стало возможным количественное измерение яркости звёзд, эти термины стали ассоциироваться с точными числовыми значениями яркости, а также стало возможным присвоение им дробной величины, например, 1,6.Технически шкала звёздных величин — логарифмическая, но обычно вам не придётся беспокоиться об этом. Существенные моменты заключаются в том, что 1) чем меньше звёздная величина, тем ярче звезда; и 2) разница
в одну звёздную величину эквивалентна коэффициенту яркости 2,512 (корень пятой степени из 100). Таким образом, звезда 1,3-й звёздной величины в 2,512 раза ярче (т.е. даёт нам в 2,512 раза больше света), чем звезда 2,3-й величины, и в 100 раз ярче звезды 6,3-й звёздной величины. У вас также могут быть отрицательные значения звёздной величины. У звезды, которая в 100 раз ярче, чем эта 1,3, значение звёздной величины составляло бы 1,3 – 5 = -3,7. (Забавным побочным эффектом применения количественной шкалы будет то, что у Сириуса, самой яркой звезды на нашем небе, значение звёздной величины будет уже не 1, а -1,6.)При хороших условиях наблюдения наш невооружённый глаз может разглядеть звёзды с величиной от отрицательной до примерно +6. Это видимые звёздные величины
, измеряющие яркость такой, какой её видим мы, и зависящие как от природной яркости самой звезды, так и от её расстояния до нас. Свет подчиняется «закону обратной квадратичной зависимости»: его интенсивность (количество энергии, доставляемой на единицу площади за единицу времени) обратно пропорциональна расстоянию от источника. Например, если вы направите экспонометр на свечу в тёмной комнате с расстояния в один фут, а затем с расстояния в десять футов, количество света, измеренное вами на расстоянии десяти футов, будет составлять 1/100 от того, которое было на расстоянии одного фута. Объяснение этому простое. Свеча (или звезда) испускает определённое количество световой энергии каждую секунду, и по мере того, как она распространяется кнаружи от источника, это количество энергии распределяется по постоянно растущей сферической поверхности, площадь которой пропорциональна квадрату её радиуса.Для сравнения значений собственной
яркости звёзд их выражают в абсолютных величинах. Абсолютная звёздная величина — это видимая величина, которую имела бы звезда при наблюдении со стандартного расстояния. Это расстояние выбрано равным десяти парсекам.Спектроскопы
Не менее важным, чем телескоп, является другой инструмент, который часто используется совместно с ним — спектроскоп
. Свет — это форма электромагнитного излучения, разновидность волны, возникающей всякий раз, когда вибрируют электрические заряды (см. рис. 3-1). Свет от реального источника вроде горячего лагерного костра или далёкой звезды обычно содержит смесь длин волн (или, что эквивалентно, частот). Задача спектроскопа состоит в том, чтобы показать вам, какое количество света каждой длины волны излучает источник.