Для получения сплавов можно применить несложное устройство, состоящее из кварцевой пробирки диаметром 10–20 мм, длиной 70-150 мм, которую соединяют встык с помощью резинового шланга со стеклянной трубкой, имеющей сбоку сужение для хлорвиниловой трубки и закрываемое пробочкой, и отверстие по оси для железной проволоки, которой перемешивают сплав. Трубка подсоединяется к резиновой камере, вакуумному насосу и баллону с аргоном (см. выше). В кварцевую пробирку вставляется железный тигель с зазором около миллиметра, чтобы он не разорвал пробирку при нагреве.
Металл для приготовления сплавов следует очистить механически от загрязнений и промыть чистым растворителем (не хлорированным!) типа гексана, взвесить под растворителем и уложить в тигель. После откачки, промывки системы аргоном и заполнения аргоном резиновой камеры открываем отверстие для проволоки и нагреваем тигель снаружи сквозь кварц пламенем гремучего газа. (Нагрев газо-воздушным пламенем может оказаться недостаточным). Можно греть пробирку и печью. Аргон медленно выходит сквозь отверстие (его ток следует заранее отрегулировать) и защищает металл от возгорания. Расплавляем металл и проволокой с колечком на конце перемешиваем его. Из-за наличия растворённых газов металл может выскочить из тигля, особенно при малом диаметре последнего. Для уменьшения этой опасности тигель следует вначале нагревать в вакууме и не повышать температуру сверх необходимой. Попадающая в сплав примесь железа для большинства наших применений не существенна.
После охлаждения в токе аргона тигель извлекается на воздух. Сплав можно выбить, слегка обстучав тигель на наковальне молотком. Следует проверить его на хрупкость (растерев пробу в ступке), на устойчивость на воздухе и в воде. Достаточно провести опыт с несколькими крупинками сплава. Результаты опытов позволят планировать способ работы с ним.
Хранить такие сплавы следует расфасованными в стеклянные вакуумированные ампулы.
Для наплавления сплава SrAl4
на внутреннюю поверхность полого катода стальную заготовку катода следует на треть заполнить крупинками сплава и нагреть до его расплавления в вышеописанном приборе для получения сплавов. Так как сплав имеет работу выхода электронов меньше чем у железа, то наплавлять его на всю длину катода нет необходимости. При горении разряда в лампе он самопроизвольно распространится по всему катоду. Получение других металлов ведётся аналогично. Литий ведёт себя подобно щёлочноземельным металлам (исключая низкую температуру плавления). Тяжёлые щёлочные металлы можно легко перегонять в вакууме.На стекло они действуют слабо.
Получение металлического натрия и его сплавов
В отличие от тяжёлых щёлочных металлов, натрий ощутимо реагирует со стеклом. Вместе с тем, температура начала перегонки у него выше, чем у калия и тем более выше, чем у цезия. Поэтому его получение связано с определёнными трудностями. Хромат и бихромат натрия гигроскопичны, поэтому работать с ними сложно.
Для получения натрия можно восстановить титановым порошком его карбонат. Для этого карбонат нужно нагреть до температуры около двухсот градусов или выше для разложения бикарбоната и удаления воды. Безводный карбонат следует смешать с пятнадцатикратным весовым количеством титанового порошка. Дело в том, что титан реагирует с углеродом, образуя карбид.
Это приводит к дополнительному разогреву термита и неконтролируемому выделению металла.
Приготовленную смесь следует, как обычно, набить в гильзу из тонкого металла и далее поступать, как и при получении других щёлочных металлов.
Натрий следует получать и перегонять в возможно более высоком вакууме, однако для этого можно применять только насосы объёмного действия. Титановые насосы различных типов малопригодны, т. к. «захлёбываются из-за сильного газовыделения при реакции.
Второй способ получения натрия в вакууме менее удобен, но не требует применения титана. Карбонат натрия может быть восстановлен углеродом.
При этом образуется натрий и окись углерода. При нагреве смеси из неё выделяется очень большое количество газов, что приводит к сильному разбросу смеси. Углерод реагирует с железной гильзой и образует эвтектику (чугун) с температурой плавления около 1200°. Поэтому тигель (гильза) легко сминается внешним давлением.