Читаем Интернет-журнал "Домашняя лаборатория", 2007 №11 полностью

Отклонение значений параметров технологических процессов от заданных может привести к значительным экономическим потерям, т. е. снижению эффективности функционирования АСУТП [1]. При этом одним из основных факторов определяющих эффективность работы систем автоматического управления является точность измерения значений параметров технологических процессов, на основе результатов которых вырабатывается управляющее воздействие. В данных условиях, преобладающими являются такие составляющие как динамическая и дополнительные погрешности измерительных преобразователей (ИП), и в совокупности могут составлять до 90 % от суммарной погрешности измерительного канала ИИС.

Появление дополнительных погрешностей обусловлено воздействием на ИП совокупности неконтролируемых факторов, например, температуры окружающей среды, влажности атмосферного воздуха, изменения параметров питающей сети и др..

Существующие в настоящее время методики расчета дополнительных погрешностей позволяют производить вычисления только для случая, когда измерения осуществляются в установившемся режиме, тогда внесение поправок на результат измерений не представляет трудности. Анализ дополнительной погрешности измерительного канала в динамическом режиме требует иного подхода, разработка которого и является целью данной работы.

Модель измеряемого сигнала на входе канала ИИС x(t) может быть представлена в виде суммы математического ожидания измеряемого параметра μx = M{x{t)}, стационарного центрированного случайного процесса гауссовского типа x0(t) и гармонической составляющей xh(t) [2–4]:

x(t) = μx + x0(t) + xh(t). (1)

Модель влияющих величин ε(t) также может быть описана выражением подобным выражению (1), т. е. [2–4]:

ε(t) = με + e0(t) + eh(t), (2)

где με — математическое ожидание влияющей величины; e0(t) — стационарный центрированный случайный процесс гауссовского типа; eh(t) — гармоническая составляющая.

При учете инерционности измерительного канала и канала влияния необходимо также иметь информацию о таких характеристиках сигналов как спектральная плотность мощности (СПМ) или соответствующая ей автокорреляционная функция (АКФ).

В общем случае выходной сигнал измерительного канала y(t) есть некоторый функционал от измерительного сигнала и влияющей величины (или величин) т. е. y(t) = Ψ{x(t),ε(t)}, но при нормировании дополнительной погрешности обычно сводят к одному из следующих видов:

— мультипликативная погрешность;

— аддитивная погрешность;

— аддитивно-мультипликативная погрешность (при нескольких влияющих величинах).

В зависимости от количества влияющих величин и их взаимной зависимости, а так же зависимости между ними и измеряемой величиной могут быть выделены следующие модели погрешности измерительного канала:

— скалярная модель с независимыми сигналами (одна влияющая величина ε{t), p = 0, xh(t) = 0, εh(t) = 0);

— скалярная модель с зависимыми сигналами (одна влияющая величина ε(t), p не = 0, xh(t) = 0, εh(t) = 0);

— скалярная модель с учетом гармонических составляющих (одна влияющая величина ε(t), p не = 0, xh(t) не = 0, εh(t) не = 0);

— векторная модель с независимыми составляющими (вектор влияющих величин [ε] = [ε1(t),ε2(t),ε3(t)….εn(t)], матрица корреляции вектора [ε] нулевая);

— векторная модель с зависимыми составляющими (вектор влияющих величин [ε] = [ε1(t),ε2(t),ε3(t)….εn(t)] матрица корреляции вектора [ε] ненулевая);

Рассмотрим основные случаи, при этом опустим громоздкие математические выкладки и промежуточные вычисления.

Суммарная погрешность измерительного преобразователя, при статистической независимости между составляющими, может быть определена по формуле [4]:

 (3)

где Δосн — основная погрешность средства измерений; Δдин — динамическая погрешность; Δдоп — дополнительная погрешность; n — число влияющих величин.

Выражение (3) также может быть представлено в следующем виде:

 (4)

где Ψi) — функция влияния, или коэффициент влияния, когда она линейна, или функция совместного влияния нескольких влияющих величин Ψij); εii-тая влияющая величина; μ0i— значение влияющей величины принятое при градуировке ИП; i = 1,2…n; j = 1, 2…n, при i не = j.

Мгновенное значение дополнительной погрешности может быть определено из разности сигнала с выхода преобразователя и входного сигнала:

Δдоп(t) = (y(t)x(t)) = ax(t)[ε(t)μ0]. (5)

Так как в выражение (4) дополнительная погрешность входит в виде квадрата своего значения, то более удобно определять сразу ее квадрат, поэтому (5) запишем в виде:

Δ2доп(t) = a2x2(t))[ε(t)μ0]2.

В технологических измерениях, как правило, интерес представляет не мгновенное, а среднее значение измеряемого параметра, а, следовательно, и расчет дополнительной погрешности необходимо проводить в «среднем» за период времени.

Перейти на страницу:

Похожие книги