Читаем Интернет-журнал "Домашняя лаборатория", 2007 №11 полностью

Выражение для расчета математического ожидания квадрата мультипликативной дополнительной погрешности без учета динамических характеристик каналов воздействия измеряемой и влияющих величин имеет вид [10]:

M{Δ2доп} = a2[μ2xμ2ε + σ2xσ2ε(1 + 2p2xε) + μ2xσ2ε + μ2εσ2x + 4μxμεσxσεp]. (6)

где p — коэффициент корреляции между измеряемой и влияющей величинами.

Здесь и в дальнейшем под обозначением με, будем понимать смещение математического ожидания влияющей величины относительно значения μ0, которое принято при градуировке измерительного преобразователя.

В том случае, когда в сигналах входной и влияющей величин присутствуют гармонические составляющие, определяемые соответственно как:

xh(t) = Cxsin(ωxt),

εh(t) = Cεsin(ωεt).

где Cx и Cε — амплитуды гармонических составляющих соответственно входного и влияющего воздействий; ωx и ωε — их частоты.

Выражение для расчета квадрата мультипликативной дополнительной погрешности с учетом гармонических составляющих коррелированных сигналов измеряемой и влияющей величин имеет вид [5]:

В том случае, когда гармонические составляющие случайных процессов xh(t) и εh(t) коррелированы, т. е. ωx = ωε, выражение (7) усложняется:

где ф — сдвиг фаз между гармоническими составляющими.

При воздействии на измерительный преобразователь n статистически независимых влияющих величин (рис. 1), не коррелированных с входным воздействием, выражение для расчета квадрата мультипликативной дополнительной погрешности имеет вид

где ai — коэффициент влияния i-той влияющей величины.

Рис. 1. Структура модели возникновения дополнительной погрешности при наличии множества влияющих воздействий.

При воздействии на ИП n статистически зависимых влияющих величин, которые коррелированы с входным воздействием, выражение (9) существенно усложняется и принимает вид:

Во всех предыдущих расчетах предполагалось, что тракты прохождения измеряемой и влияющей величин являются безинерционными, или, искажениями формы сигналов за счет инерционности можно пренебречь. В том случае, когда в каналах присутствует инерционность (рис. 2), расчет математического ожидания квадрата мультипликативной дополнительной погрешности осуществляется по иной схеме.

Рис. 2.Структура модели образования динамической и мультипликативной дополнительной погрешностей при учете динамических свойств каналов сигналов входного и влияющего воздействий

При наличии в измерительном канале инерционности в результат измерения помимо дополнительной погрешности вносится еще и динамическая погрешность. Существующие методы расчета позволяют вычислить отдельно каждую составляющую, а затем, произвести геометрическое суммирование. При этом, как правило, предполагается, что эти составляющие статистически независимы. В действительности, это допущение не совсем корректно, т. к. не учитывает наличие корреляционной связи между составляющими суммарной погрешности, возникающей при прохождении измерительного сигнала и сигнала влияющей величины через тракт ИП.

Суммарная погрешность ИП, будет определяться из соотношения:

Δ(t) = x(t) — y1(t) = x(t) — [ay(t)e(t) + y(t)].

Определим квадрат суммарной погрешности:

Δ2(t) = [x(t)y(t)ay(t)e(t)]2 = [x(t)y(t)]+ a2y2(t)e2(t)2ay(t)[x(t)y(t)].

В выражении (11) присутствуют 3 составляющие. Первая определяет квадрат динамической погрешности Δ2дин; вторая — квадрат дополнительной погрешности Δ2доп; третья — член, обусловлен наличием корреляционной связи между дополнительной и динамической погрешностями.

Рассмотрим, в качестве примера, случай, когда случайный процесс на входе измерительного канала имеет спектральную плотность мощности вида:

Sx(ω) = 2σ2xα/π(α2 + ω2),

где α — параметр функции СПМ, а передаточная функция каналов воздействия сигналов ИП описываются инерционным звеном первого порядка:

W(jω) = 1/(1 + jωT))

где Т — постоянная времени.

Дисперсии измеряемой и влияющей величин соответственно равны [12]:

σ2y = σ2x/(1 + αT1),

σ2e = σ2ε/(1 + αT2),

Примем так же, как наиболее характерный случай, что корреляционная матрица входного воздействия и влияющей величины определена как:

где ах, аε и ахε, аεх, с = σxσεp — параметры соответственно корреляционных и взаимных корреляционных функций измеряемого и влияющего воздействий.

Математическое ожидание квадрата динамической погрешности равно:

M{Δ2дин} = σxВ1/(1 + B1)

где В1 = аxТ1.

Математическое ожидание квадрата мультипликативной дополнительной погрешности:

где В2 = аεТ2.

Математическое ожидание корреляционной составляющей суммарной погрешности определяется из следующего выражения:

 (14)

Перейти на страницу:

Похожие книги