Читаем Интернет-журнал "Домашняя лаборатория", 2007 №7 полностью

Кстати, о тепле. Это весьма важное понятие. Горючие и взрывчатые свойства веществ и их смесей можно оценить, рассматривая только тепловой эффект и механическую работу реакции — изменение энтальпии данной химической системы. Есть специальные таблицы, в которых собраны стандартные энтальпии образования химических соединений. По определению, энтальпия (ее еще называют теплосодержанием) — это теплота, поглощенная системой в процессе реакции, плюс механическая работа, совершенная системой против внешних сил при постоянном давлении. Для расчетов полезна стандартная энтальпия образования Н°298. Ее вычисляют для химических реакций (иногда даже гипотетических), в которых соединения получают при 25 °C и 1 атмосфере из простых веществ. У простых веществ в наиболее устойчивой форме (при данных стандартных условиях) принято нулевое значение энтальпии.


Пример 1.

Для жидкой ртути при 25 °C и 1 атм. Н°298 = 0; для паров ртути в тех же условиях Н°298 = 60,8 кДж/моль. Положительная Н°298 означает, что, испаряясь, ртуть поглощает энергию.

Пример 2.

Для реакций:

Н2(г) + 1/2О (г) = Н2О (г)

ΔН°298 = -242 кДж/моль;

Н2(г) + 1/2О (г) = Н2О (ж)

ΔН°298 = -286 кДж/моль;

Эти величины — табличные значения энтальпии образования воды. На их основе можно сделать вывод, что при конденсации паров воды (стандартные условия):

Н2О (г)-> Н2О (ж) выделится 44 кДж/моль тепла.

Изменение энтальпии здесь, как и в случае любой химической реакции, равно алгебраической разности стандартных энтальпии образования продуктов и исходных веществ.


Теперь вернемся к "взрывчатой" теме. Мы не будем рассматривать синтез и свойства индивидуальных ВВ (тротила, гексогена, гремучей ртути и тому подобного). Красивые и, если очень хочется, громкие эффекты можно получить, пользуясь пиротехническими смесями, которые состоят из горючего и окислителя с различными добавками. Однако прежде чем смешивать, надо оценить, насколько безопасным будет продукт. Для простейшей оценки мы будем учитывать только тепловые эффекты возможных реакций.

Большинство пиротехнических составов — это стехиометрическая смесь горючего и окислителя. Часто они способны гореть без доступа воздуха.

Пиротехнические смеси должны быть:

1 — стойкими при длительном хранении;

2 — минимально чувствительными к механическим воздействиям (не загораться при случайном трении или ударе);

3 — не слишком легко воспламеняемыми (обычно температура зажигания не менее 200 °C);

4 — не взрывчатыми (то есть горение не должно переходить в детонацию);

5 — минимально токсичными (не содержать солей ртути, кадмия, таллия и тому подобного);

6 — максимально однородными, сгорать равномерно с определенной скоростью).

Возможно, вам покажется странным, что дальше я буду рассказывать и о весьма экзотических веществах. Однако мне хорошо известно, как в нынешних условиях всеобщего разгильдяйства в руки юных химиков попадают самые невероятные реагенты, причем свойства многих из них в доступной литературе не описаны. К сожалению, происходит все больше случаев, когда неграмотное обращение с химическими продуктами, "найденными" в районе оборонных заводов, кончалось трагически.


ЗАНЯТИЕ № 2


Красивые и, если очень хочется, громкие эффекты можно получить с помощью пиротехнических составов. Но прежде чем что-то смешивать и поджигать, надо прикинуть, какими могут быть последствия.

В прошлый раз мы уже говорили о том, что пиротехнические смеси состоят из горючего (то есть восстановителя) и окислителя. Горючим в пиротехнике могут быть самые разные вещества — от древесных опилок до порошка вольфрама. Но с очень мелкими металлическими порошками надо обращаться с особой осторожностью: ведь они часто сами по себе воспламеняются.

Порошок неизвестного металла, о котором вы знаете лишь то, что он "вот только с завода и здорово горит", может причинить большие неприятности. Вы обязательно должны знать состав металла или сплава, с которыми собираетесь химичить. Конечно, безопаснее работать с крупными (диаметром не меньше 0,1 мм) металлическими опилками, пролежавшими несколько дней на воздухе.

Фосфор — весьма опасное горючее вещество. Лучше не использовать его в самодельных смесях. И вообще избегайте любых контактов с белым фосфором (яд)!

В качестве окислителей для пиротехнических смесей тоже годны самые разнообразные соединения — от бертолетовой соли до гипса и гексахлорэтана. Так вот, расчет по термохимическим уравнениям нужен именно для прогноза поведения окислителя в смеси. Дело в том, что некоторые окислители способны и без горючего распадаться с выделением тепла. Причем они могут не только загореться, но и сдетонировать. Смеси таких окислителей с восстановителями обладают повышенной чувствительностью к трению и удару. Конечно, чтобы точно предсказать способность смеси к детонации, надо проанализировать все кинетические параметры системы (энтропийный фактор, энергию активации, автокатализ и тому подобное). Но главное, что окислители, неспособные к экзотермическому разложению, практически не детонируют.

Перейти на страницу:

Похожие книги

Лучшие модели на любую фигуру без примерок и подгонок
Лучшие модели на любую фигуру без примерок и подгонок

Книга представляет собой сборник, который содержит схемы построения чертежей из двух предыдущих бестселлеров автора, а также предлагает ряд новых моделей. Галия Злачевская – автор эксклюзивной методики конструирования швейных изделий. Особенность ее метода в том, что вариант построения модели подбирается с учетом особенностей силуэта фигуры, поэтому крой сразу получается точным. И главное – больше никаких примерок и подгонок! Следуя простым рекомендациям автора, вы легко сможете «шаг за шагом» освоить эту методику и в итоге – получите идеально сидящую вещь.Вы научитесь создавать современные, неповторимые и оригинальные модели для мужчин, женщин, детей и даже малышей до 3 лет с минимальными затратами времени и сил.

Галия Мансуровна Злачевская

Сделай сам / Хобби и ремесла / Дом и досуг