Читаем Интернет-журнал "Домашняя лаборатория", 2007 №12 полностью

См. также статьи «Взаимодействия частиц», «Электронные лучи 1 и 2».


ЭЛЕКТРОННЫЕ ЛУЧИ 1 — ТЕРМОЭЛЕКТРОННАЯ ЭМИССИЯ


В процессе термоэлектронной эмиссии, т. е. испускании электронов с нити накала, в вакуумной трубке образуется электронный луч (пучок электронов). Нить накала (нагреваемый катод) разогревается при прохождении по ней электрического тока. Электроны в проводнике приобретают достаточную кинетическую энергию, чтобы покинуть металл и притянуться к расположенной поблизости положительно заряженной пластине, имеющей небольшое отверстие, через которое пропускается некоторое количество электронов. Затем эти электроны, проходя между «фокусирующими» электродами, фокусируются в пучок.

Кинетическая энергия и, следовательно, скорость электронов в электронном пучке зависят от потенциала анода VA, так как работа, прикладываемая к каждому электрону анодом, придает электрону кинетическую энергию. Поскольку работа равна eVA, то и кинетическая энергия электрона в пучке также равна eVA. При условии, что скорость v электрона значительно меньше скорости света, его кинетическая энергия равна 1/2mv2, следовательно, 1/2mv2 = eVA.

Из приведенной выше формулы следует, что все электроны в одном луче имеют одинаковую кинетическую энергию и скорость и поэтому равномерно отклоняются электрическим и магнитным полями. На практике электроны в луче имеют небольшой диапазон скоростей вследствие относительно небольшой начальной кинетической энергии в нагреваемом катоде.

В электронно-лучевых трубках телевизоров или мониторов применяются магнитные отклоняющие катушки, заставляющие луч двигаться по люминесцентному экрану вдоль горизонтали и затем смещаться чуть ниже. Таким образом на экране создается изображение. Различия в сигнале регулируют яркость луча.

В трубках осциллографов применяются электростатические пластины, заставляющие луч двигаться вдоль одной и той же линии сначала медленно в одном направлении, а затем быстро в другом. При изменении напряжения параллельных пластин, между которыми проходит луч, на экране появляется изображение волнистой линии.

См. также статьи «Заряд и ток», «Магнитное поле 1 и 2», «Электрическое поле 1 и 2», «Электрон».


ЭЛЕКТРОННЫЕ ЛУЧИ 2 — ТРАЕКТОРИИ В ПОЛЯХ


В однородном электрическом поле напряженностью Е пучок электронов испытывает действие постоянной силы F — еЕ в направлении, противоположном направлению электрического поля. Следовательно, часть траектории пучка электронов представляет собой параболу, схожую с траекторией брошенного тела, поскольку на него тоже действует одна постоянная сила в одном направлении (сила тяжести). Однородное электрическое поле напряженностью Е = V/d создается при разности потенциалов V между двумя пластинами, расположенными параллельно на расстоянии d друг от друга. В осциллографах отклонение электронного луча пропорционально разности потенциалов между отклоняющими пластинами.



В однородном магнитном поле с плотностью магнитного потока В электрон, движущийся со скоростью v под прямым углом к линиям магнитного поля, испытывает действие силы F = Bev. Эта сила перпендикулярна линиям магнитного поля и направлению движения электрона. При отсутствии других полей электрон движется по круговой траектории с радиусом r = mv/Be. Эта сила вызывает центростремительное ускорение, в результате которого Bev = mv2/r. Сила магнитного поля не совершает работы по отношению к электрону, потому что ее направление совпадает с направлением электронного луча. В электронно-лучевых трубках телевизоров и мониторов магнитное поле используется для отклонения электронного луча, который движется вдоль люминесцентного экрана и создается вследствие прохождения тока по ряду отклоняющих катушек.



См. также статьи «Круговое движение», «Магнитное поле 1 и 2», «Электрическое поле 1 и 2», «Электронные лучи 2».


ЭЛЕКТРОПРОВОДНОСТЬ


Электропроводность, или электрическая проводимость, металлов, собственных полупроводников и полупроводников n-типа обусловлена наличием в них свободных электронов, носителей отрицательного заряда. Электроны свободно движутся внутри вещества, поскольку их не удерживают атомы. Носителями заряда в полупроводниках p-типа являются дыры. В ионных растворах носителями заряда служат положительно и отрицательно заряженные ионы.

При разности потенциалов на концах металлического проводника или полупроводника носители зарядов, притягиваясь к противоположно заряженному концу, начинают к нему перемещаться. Так возникает электрический ток.

Перейти на страницу:

Похожие книги