Читаем Интернет-журнал "Домашняя лаборатория", 2007 №12 полностью

Обратимый — это такой процесс, которому соответствует обратный процесс, приводящий систему в изначальное состояние. Например, если груз маятника отпустить из неравновесного положения, он качнется и вернется в прежнее положение (при отсутствии сопротивления воздуха).

Большинство процессов необратимо, поскольку приводит к необратимой трате энергии. Трата энергии — это наиболее вероятный результат всех возможных изменений и перемещений. Возьмем, для примера, ящик, поделенный на две половины перегородкой с отверстием. Представим, что изначально в одной из половин двигались четыре молекулы. Через достаточно долгий промежуток времени наиболее вероятный исход этой ситуации таков: в каждой половине окажется по две молекулы. Существует 16 (= 24) возможных комбинаций четырех молекул. Наиболее вероятное сочетание — по две молекулы в каждой половине, так как существует шесть способов такого распределения.

См. также статьи «Идеальные газы», «Коэффициент полезного действия».


ЯДЕРНАЯ МОДЕЛЬ АТОМА


Каждый атом содержит ядро, состоящее из протонов и нейтронов, удерживаемых вместе мощными ядерными силами. Атом изотопа AZX содержит Z протонов и А — Z нейтронов.

Эрнест Резерфорд, бомбардируя атомы α-частицами, доказал, что в атоме имеется ядро. Он обнаружил, что поток α-частиц, направленных узким пучком на тонкую металлическую фольгу, почти весь проходит через нее; измерил количество частиц, претерпевших отклонение под различными углами в секунду, и установил, что небольшое количество частиц отклонилось на угол, превышающий 90°. В качестве объяснения такого явления ученый предположил, что каждый атом содержит очень маленькое положительно заряженное ядро, на которое приходится основная часть его массы, и что оно отталкивает а-частицу, так как имеет тот же электрический заряд. С помощью закона Кулона Резерфорд показал, что количество частиц, отклоняющихся в секунду на угол θ, пропорционально 1/sin4(θ/2), что соответствовало результатам экспериментов. Он установил, что диаметр ядра приблизительно в 10-5 раз меньше диаметра атома и что ядро самого легкого атома (атома водорода) состоит из одной частицы, которую назвали протоном. Ученый также доказал, что атомный номер Z элемента — это количество протонов в ядре каждого атома.

Существование нейтронов было предсказано Резерфордом на том основании, что массовое число ядра всегда больше количества протонов, так что наряду с протонами в ядре должны находиться и нейтральные частицы. Нейтроны открыл Джеймс Чедвик, бомбардируя фольгу из бериллия α-частицами. Он обнаружил, что бериллий становился источником нового излучения, которое при столкновении с атомами азота оставляло следы в газовой камере. Исследуя их, Чедвик доказал, что излучение состояло из незаряженных частиц, масса которых примерно равна массе протона.

См. также статьи «Деление ядра», «Радиоактивность 1–4».


ЯДЕРНЫЙ СИНТЕЗ


Ядерный (термоядерный) синтез — это процесс слияния легких ядер, образующих более тяжелые ядра. В результате выделяется энергия при условии, что образовавшееся ядро содержит не более 50 нейтронов и протонов. Чтобы два ядра слились, они должны приблизиться друг к другу на расстояние порядка 2–3 х 10-15 м, оказавшись в радиусе действия ядерных сил. Начальная кинетическая энергия двух сливающихся ядер должна быть порядка МэВ; только в этом случае можно преодолеть электростатические силы отталкивания между ядрами и позволить им приблизиться на расстояние 2–3 х 10-15 м. Такие условия создаются внутри звезды в результате чрезвычайно высокой температуры, которая поддерживается энергией, выделяемой при слиянии ядер водорода (протонов) и образовании ядер гелия и других элементов. Энергия, выделяемая на одно ядро гелия, равна приблизительно 7 МэВ на нуклон, что значительно больше энергии, выделяемой при делении ядер.

Реакция синтеза может поддерживаться в термоядерном реакторе, где магнитные поля удерживают плазму из ионизированного водорода при пропускании через нее тока с очень большой силой, порядка 106 А. Этого тепла достаточно, чтобы вызвать реакцию синтеза, при которой из ядер водорода образуются ядра гелия и других более тяжелых элементов; при этом наблюдаются следующие стадии:

1) р + р —> 21H + 01β+ 0,4 МэВ (в плазме);

2) 21H31H1 —> 42Не + 10n + 17,6 МэВ (в плазме);

3) 63Li + 10n —> 42Не31H + 4,8 МэВ (в литиевой оболочке, окружающей реактор).

Перейти на страницу:

Похожие книги