Кроме того, исследователю известны интенсивности всех отражений. Таким образом, в его распоряжении имеются практически все сведения о структуре кристалла, всё, что касается характера строения молекулы из атомов и кристалла из молекул.
Теперь нам надо перейти от «пустой» решетки, состоящей из одних узлов, к решетке, начиненной атомами. На каких деталях дифракционной картины сказывается структура ячейки? Ответ окажется следующим: структура ячейки влияет на интенсивность отраженных лучей. Что же касается геометрии дифракционной картины, то она определяется только видом решетки. Атомы внутри ячейки не добавляют «лишних» отраженных лучей. В то же время вполне возможно, что структура ячейки заставит пропасть некоторые отражения — доведет их интенсивность до нуля.
Откуда следует такое заключение? Дело в том, что атомы внутри ячейки не создадут новых систем плоскостей. Узор атомов приведет лишь к возникновению «вставных» плоскостей. Взгляните, на рисунке 8 изображена та же решетка, что и на рисунке 4. Но теперь она не «пустая».
…???…
Рис. 8
Выберем опять предельно простой случай. Предположим, что реальная решетка построена из двухатомных молекул, а узел решетки был взят в центре такой молекулы. Реальная система плоскостей (для примера взят случай
Покажем, что интенсивность отраженного луча будет зависеть от структуры ячейки — в данном случае от межатомного расстояния в молекуле и от угла, который образует ось молекулы с осью ячейки.
Интенсивность излучения пропорциональна квадрату амплитуды волны. Действительно, пусть в точке наблюдения поле, создаваемое решеткой атомов, записывается как
Черточка сверху означает усреднение по времени (колебания происходят быстро, и опыт фиксирует средние значения). Но
(это несложно доказать). Поэтому интенсивность оказывается пропорциональной
В случае решетки двухатомных молекул результирующее поле электромагнитной волны можно рассматривать как сумму полей двух простых решеток. Эти два поля придут в точку наблюдения со сдвигом фаз, который мы обозначим 2
A•cos (
Каждый узел «расщепился» на две частицы, создающие одно поле с опережением по фазе, а другое с отставанием. Складывая, возводя в квадрат и усредняя по времени, мы получим, что интенсивность отраженного луча будет пропорциональна соs 2
По определению,
?
= (2?/?)•?,где
?
= |ОС| + |OD| = 2rn•sinГде
?
= 2rn•sin ? = ?•rn(n/d),откуда разность фаз
?
Итак, интенсивность отраженной волны, пропорциональная cos2
Что же… задача решена? Интенсивности дифрагированных лучей связаны со структурой в общем-то простой формулой: расчет интенсивностей отраженных лучей по заданной структуре не сложен. Дело сводится к тому, чтобы определить разности хода между волнами, отраженными всеми «вставными» решетками. Вы можете справиться с этой задачей и для кристалла, состоящего из сотни атомов. Вопрос лишь во времени.
Но читатель, несомненно, заметил, что расчет, о котором идет речь, не тот, который нам нужен. Задача состоит в нахождении атомного строения из данных опыта, а не в том, чтобы рассчитать дифракционную картину, исходя из сведений о структуре. Прямая задача намного сложнее обратной. Интенсивность пропорциональна квадрату амплитуды результирующей волны, которая есть сумма тригонометрических функций. Не только технически сложно, но и просто невозможно определить аргументы косинусов, зная лишь квадрат их сумм. Вот если бы опыт давал значения амплитуд рассеяния, тогда дело обстояло бы совсем просто.
На первый взгляд ситуация кажется безнадежной. Долгое время исследователи действовали так называемым методом проб и ошибок. Это значит: придумывали структуру и смотрели, сочетается ли она с опытом. Но так далеко не уедешь.