Читаем Интерстеллар: наука за кадром полностью

Глава 4. Искривления пространства и времени, приливная гравитация

Простейшее количественное представление эйнштейновского закона искривления времени: положите рядом две пары одинаковых часов, чтобы они находились в покое друг относительно друга и находились на разных расстояниях от действующего на них гравитационного притяжения. Пусть R — это дробная разница скорости хода часов, D — расстояние между ними, a g — действующее на них гравитационное ускорение (направленное от часов, которые идут быстрее, к часам, которые идут медленнее). Тогда закон Эйнштейна утверждает, что g = Rc2/D. В случае эксперимента Паунда — Ребки в гарвардской башне R равнялось 210 пикосекундам в день: 2,43∙10-15, а высота башни D равнялась 73 футам (22,3 метра). Подставляя эти значения в формулу для закона искривления времени, получим g = 9,8 м/с2, что действительно равняется гравитационному ускорению (ускорению свободного падения) на Земле.


Глава 6. Анатомия Гаргантюа

Для черной дыры, которая, как Гаргантюа, вращается очень быстро, окружность горизонта С в экваториальной плоскости выражается формулой С = 2πGM/c2 = 9,ЗМ/M км. Здесь М — это масса дыры, а М = 1,99∙1030 — это солнечная масса. У очень медленно вращающейся дыры окружность горизонта вдвое больше. Радиус горизонта равен его окружности, деленной на 2π: R = GM/c2= 1,48∙108 в случае Гаргантюа, что практически равно радиусу орбиты Земли вокруг Солнца.

Массу Гаргантюа я выбрал исходя из следующих рассуждений: масса планеты Миллер m вызывает направленное внутрь гравитационное ускорение g на поверхности планеты в соответствии с ньютоновским законом обратных квадратов g = Gm/r2, где г — это радиус планеты. На стороне планеты, которая обращена к Гаргантюа, и на стороне, которая противостоит дыре, приливная гравитация Гаргантюа вызывает растягивающее ускорение gt (разница силы притяжения Гаргантюа между поверхностью планеты и ее центром, на расстоянии r), gt = (2GM/R)r3. Здесь R — это радиус орбиты планеты Миллер вокруг Гаргантюа, который практически соответствует радиусу горизонта черной дыры. Если приливное ускорение превысит собственное гравитационное ускорение планеты, ее разорвет на части, поэтому gt должно быть меньше g: gt < g. Подставляя формулы для g, gt и R, выразив массу планеты через ее плотность ρ как m = (4π/3)r3ρ и произведя некоторые вычисления, получим: М = √(3c3)/√(2πG3ρ). Я оцениваю плотность планеты Миллер как ρ = 10000 кг/м3 (что приблизительно соответствует плотности сжатых горных пород), откуда получаю выражение для массы Гаргантюа: М < 3,4∙1038 кг — это примерно 200 миллионов солнечных масс, что я, в свою очередь, аппроксимирую до 100 миллионов солнечных масс. Используя уравнения теории относительности, я получил формулу, которая связывает замедление времени на планете Миллер, S = (один час за семь лет) = 1,63∙10-5, с долей а, на которую скорость вращения Гаргантюа меньше максимально возможной: α = 16S3/(3√3). Эта формула верна только для очень высоких скоростей вращения. Подставляя значение S, получим α = 1,3∙10-14, то есть скорость вращения Гаргантюа меньше предельной приблизительно на одну стотриллионную долю.


Глава 8. Внешний вид Гаргантюа

Уравнения для орбитального движения лучей света вокруг Гаргантюа, которые я предоставил Оливеру Джеймсу из Double Negative, — вариант уравнений из приложения А в [Levin, Perez-Giz 2008]. Уравнения для изменения сечения пучков света — вариант уравнений из [Pineult, Roeder 1977a] и [Pineult, Roder 1977b]. В нескольких статьях, которые будут выложены по адресу arxiv.org/find/ gr-qc, мы с командой Пола Франклина дадим конкретные формы наших уравнений и расскажем о подробностях их реализации и полученных в ходе моделирования результатах.


Глава 12. Задыхаясь без кислорода

Вот расчеты, лежащие в основе заявлений, которые я делаю в главе 13. Это неплохой пример того, как ученый производит оценки. Цифры здесь весьма приблизительны; я указываю их точность лишь до одного знака после запятой.

Масса земной атмосферы 5∙1018 кг, из которых около 80 процентов — это азот, а 20 процентов — молекулярный кислород, 02; тогда выходит, что в атмосфере 1018 кг O2. Количество углерода в неперегнивших растениях (геофизики называют его «органическим углеродом») составляет около 3∙1015 кг — приблизительно половина находится в поверхностных слоях мирового океана, и половина — на суше (таблица 1 из [Hedges, Keil 1995]). Обе эти части окисляются (преобразуются в СO2) в течение примерно 30 лет. Поскольку молекула СO2 состоит из двух атомов кислорода (полученного из атмосферы) и лишь одного атома углерода, а масса атома кислорода составляет 16/12 от массы атома углерода, после того как все растения на Земле погибнут, на окисление органического углерода будет затрачено 2 х 16/12 х (3∙1015 кг) = 1016 кг O2 — один процент всего атмосферного кислорода.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Люди на Луне
Люди на Луне

На фоне технологий XXI века полет человека на Луну в середине прошлого столетия нашим современникам нередко кажется неправдоподобным и вызывает множество вопросов. На главные из них – о лунных подделках, о техническом оснащении полетов, о состоянии астронавтов – ответы в этой книге. Автором движет не стремление убедить нас в том, что программа Apollo – свершившийся факт, а огромное желание поделиться тщательно проверенными новыми фактами, неизвестными изображениями и интересными деталями о полетах человека на Луну. Разнообразие и увлекательность информации в книге не оставит равнодушным ни одного читателя. Был ли туалет на космическом корабле? Как связаны влажные салфетки и космическая радиация? На сколько метров можно подпрыгнуть на Луне? Почему в наши дни люди не летают на Луну? Что входит в новую программу Artemis и почему она важна для президентских выборов в США? Какие технологии и знания полувековой давности помогут человеку вернуться на Луну? Если вы готовы к этой невероятной лунной экспедиции, тогда: «Пять, четыре, три, два, один… Пуск!»

Виталий Егоров (Zelenyikot) , Виталий Юрьевич Егоров

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Научно-популярная литература / Учебная и научная литература / Образование и наука
История Византии
История Византии

Византийская империя. «Второй Рим».Великое государство, колыбель православия, очаг высокой культуры?Тирания, безжалостно управлявшая множеством покоренных народов, давившая в подданных всякий намек на свободомыслие и жажду независимости?Путешественники с восхищением писали о блеске и роскоши «Второго Рима» и с ужасом упоминали о жестокости интриг императорского двора, о многочисленных религиозных и политических распрях, терзавших империю, о феноменально скандальных для Средневековья нравах знатных византийцев…Византийская империя познала и времена богатства и могущества, и дни упадка и разрушения.День, когда Византия перестала существовать, известен точно: 29 мая 1453 года.Так ли это? Что стало причиной падения Византийской империи?Об этом рассказывает в своей уникальной книге сэр Джон Джулиус Норвич.

Джон Джулиус Норвич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература